精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,M(﹣2,0).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A(ρ,θ)为曲线C上一点,B(ρ,θ+ ),且|BM|=1.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求|OA|2+|MA|2的取值范围.

【答案】解:(I)B(ρ,θ+ ),化为直角坐标:B
∵|BM|=1,∴ =1,化为:ρ2+4ρ +3=0,展开:ρ2+ +3=0,
化为直角坐标方程:x2+y2+2x﹣2 y+3=0.
(II):x2+y2+2x﹣2 y+3=0配方为:(x+1)2+ =1,可得圆心C ,半径r=1.
点P(﹣1,0)到圆心C的距离d=
A(ρ,θ)化为直角坐标A(x,y).
∴|OA|2+|MA|2=x2+y2+(x+2)2+y2=2[(x+1)2+y2]+2∈[2×3﹣1+2,2×3+1+2],即|OA|2+|MA|2∈[7,9].
【解析】(I)B(ρ,θ+ ),化为直角坐标:B ,利用|BM|=1,可得ρ2+4ρ +3=0,展开把 及其ρ2=x2+y2代入即可得出.(II)x2+y2+2x﹣2 y+3=0配方为:(x+1)2+ =1,可得圆心C,半径r.得出点P(﹣1,0)到圆心C的距离d.A(ρ,θ)化为直角坐标A(x,y).|OA|2+|MA|2=2[(x+1)2+y2]+2∈[2d2﹣1+2,2d2+1+2].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右顶点A(2,0),且过点
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(1,0)且斜率为k1(k1≠0)的直线l于椭圆C相交于E,F两点,直线AE,AF分别交直线x=3于M,N两点,线段MN的中点为P,记直线PB的斜率为k2 , 求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的导函数,( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解自助游是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:

赞成自助游

不赞成自助游

合计

男性

女性

合计

1若在这人中,按性别分层抽取一个容量为的样本女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下认为赞成自助游是与性别有关系?

2若以抽取样本的频率为概率从旅游节大量游客中随机抽取人赠送精美纪念品记这人中赞成自助游人数为的分布列和数学期望.

:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角的对边分别为,向量(

,满足.

(1)求角的大小;

(2)设 有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:

2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如图所示.

用样本估计总体,频率估计概率,解决如下问题:

(1)求该市纯电动汽车2017年地方财政补贴的均值;

(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:

(同一组数据用该区间的中点值作代表)

2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台; 交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.

该企业现有两种购置方案:

方案一:购买100台直流充电桩和900台交流充电桩;

方案二:购买200台直流充电桩和400台交流充电桩.

假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的奇函数,当时,满足

( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员在篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:
(Ⅰ)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数;
(Ⅱ)在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案