精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5)
(1)求m的值,并确定f(x)的解析式.
(2)若y=loga[f(x)-ax](a>0,且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.
考点:幂函数的性质,函数单调性的性质
专题:分类讨论,函数的性质及应用
分析:(1)根据函数f(x)为偶函数,且f(3)<f(5),求出m的值即可;
(2)求出函数y的解析式,讨论a的值,求出函数y在区间[2,3]上为增函数时a的取值范围.
解答: 解:(1)∵函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5),
∴-2m2+m+3>0,
即2m2-m-3<0,
解得-1<m<
3
2

当m=0时,-2m2+m+3=3,不满足题意;
当m=1时,-2m2+m+3=2,满足题意;
∴m=1时,f(x)=x2
(2)∵y=loga[f(x)-ax]
=loga(x2-ax)
=loga[(x-
a
2
)
2
-
a2
4
],其中a>0,且a≠1;
∴当0<a<1时,0<
a
2
1
2
,函数t=(x-
a
2
)
2
-
a2
4
在(-∞,
a
2
)是减函数,
对应函数y在(-∞,0)上是增函数,不满足题意;
当a>1时,
a
2
1
2
,函数t=(x-
a
2
)
2
-
a2
4
在(
a
2
,+∞)上是增函数,
又x2-ax>0,得x>a,函数y在(a,+∞)上是增函数,
a>2
a
2
≥2
,解得a≥4;
∴函数y在区间[2,3]上为增函数时,实数a的取值范围是[4,+∞).
点评:本题考查了求幂函数的解析式的应用问题,也考查了分类讨论思想的应用问题与函数单调性的应用问题,是综合性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(2,sinθ),
b
=(1,cosθ),θ为锐角.
(1)若
a
b
=
5
2
,求sinθ+cosθ的值;
(2)若
a
b
,求
1+cos2θ
sin2θ
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|x≥0},B={x|x2-6x+8≤0},则A∩∁RB=(  )
A、{x|x≤0}
B、{x|2≤x≤4}
C、{x|0≤x<2或x>4}
D、{x|0<x≤2或x≥4}

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈(1,+∞)时,用数学归纳法证明:?n∈N*,ex-1
xn
n!
.(n!=1•2•3•…•(n-1)n)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},a1=1
(1)若{an}是公差为正数的等差数列,求证:
1
a1
+
1
a4
1
a2
+
1
a3

(2)若对任意n∈Nn均有an+1=
an
an+1
 求数列{an}的通项公式
(3)记(2)中数列{an}的前n项和为Sn,求证:S2n-Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数在区间[0,1]上是增函数,且满足f(x+1)f(x)=2.则(  )
A、f(-
5
2
)<f(0)<f(3)
B、f(0)<f(-
5
2
)<f(3)
C、f(0)<f(3)<f(-
5
2
D、f(3)<f(0)<f(-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=6,|
b
|=4,
a
b
的夹角为120°,则(
a
+2
b
)•(
a
-3
b
)的值是(  )
A、-84B、144
C、-48D、-72

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lgx,若对任意的正数x,不等式f(x)+f(t)≤f(x2+t)恒成立,则实数t的取值范围是(  )
A、(0,4)
B、(1,4]
C、(0,4]
D、[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某年级女生五十米短跑情况,从该年级中随机抽取8名女生进行五十跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为9.4秒)的概率为(  )
A、0.375B、0.625
C、0.5D、0.125

查看答案和解析>>

同步练习册答案