精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=x2-2x|x-a|(其中a∈R).
(1)当a=1时,求函数f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值为-1,求a的值.

分析 (1)求出a=1时,f(x)的解析式,讨论x的范围,求得二次函数的值域,进而得到所求;
(2)求出f(x)的分段函数式,讨论a的范围,结合二次函数的单调性,可得最小值,进而得到a的值.

解答 解:(1)当a=1时,f(x)=x2-2x|x-1|
=$\left\{{\begin{array}{l}{{x^2}-2x(x-1)=-{x^2}+2x=-{{(x-1)}^2}+1,x≥1}\\{{x^2}+2x(x-1)=3{x^2}-2x=3{{(x-\frac{1}{3})}^2}-\frac{1}{3},x<1}\end{array}}\right.$,
当x≥1时,f(x)递减,可得f(x)∈(-∞,1];
当x<1时,f(x)∈[-$\frac{1}{3}$,+∞).
则函数f(x)的值域(-∞,+∞);
(2)$f(x)=\left\{\begin{array}{l}3{(x-\frac{a}{3})^2}-{\frac{a}{3}^2},x<a\\-{(x-a)^2}+{a^2},x≥a.\end{array}\right.$,
①当a≤0时,f(x)在(0,2)上为减函数,
故$f{(x)_{min}}=f(2)=-{(2-a)^2}+{a^2}=-1$,
可得$a=\frac{3}{4}$,不符.                          
②当a>0时,可知f(x)在$(0,\frac{a}{3}),(a,+∞)$上为减函数,在$(\frac{a}{3},a)$上为增函数.
(i)当$2≤\frac{a}{3},即a≥6$时,$f{(x)_{min}}=f(2)=-{(2-a)^2}+{a^2}=-1$,得$a=\frac{3}{4}$,不符;
(ii)当$\frac{a}{3}<2<a,即2<a<6$时,$f{(x)_{min}}=f(\frac{a}{3})=-\frac{a^2}{3}=-1$,得$a=\sqrt{3}$,不符;
(iii)当a≤2时,$f{(x)_{min}}=f(\frac{a}{3})=-\frac{a^2}{3}=-1$或$f{(x)_{min}}=f(2)=-{(2-a)^2}+{a^2}=-1$
得$a=\frac{3}{4}$或$a=\sqrt{3}$,符合.
综上所述$a=\frac{3}{4}$或$a=\sqrt{3}$.

点评 本题考查二次函数的值域的求法,注意运用绝对值的意义,以及对称轴和区间的关系,考查函数的最值的求法,注意运用分类讨论的思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若对任意实数x使得不等式|x-a|-|x+2|≤3恒成立,则实数a的取值范围是(  )
A.[-1,5]B.[-2,4]C.[-1,1]D.[-5,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影等于$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点P(-1,4)及圆C:(x-2)2+(y-3)2=1.则下列判断正确的序号为②③.
①点P在圆C内部;
②过点P做直线l,若l将圆C平分,则l的方程为x+3y-11=0;
③过点P做直线l与圆C相切,则l的方程为y-4=0或3x+4y-13=0;
④一束光线从点P出发,经x轴反射到圆C上的最短路程为$\sqrt{58}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a、b、c∈R,且a>b>0,则下列不等式一定成立的是(  )
A.a-c<b-cB.$\sqrt{a}$>$\sqrt{b}$C.$\frac{a}{c}$>$\frac{b}{c}$D.ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示程序框图,若输出s的值为10,则判断框中填入的条件可以是(  )
A.i<10?B.i≤10?C.i≤11?D.i≤12?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线y2=2px(p>0)的焦点F位于直线x+y-1=0上.
(Ⅰ)求抛物线方程;
(Ⅱ)过抛物线的焦点F作倾斜角为45°的直线,交抛物线于A,B两点,求线段AB的中点C的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=tan($\frac{x}{2}$-$\frac{π}{6}$)在一个周期内的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将函数y=sin(4x+$\frac{π}{4}$)的图象上各点的横坐标伸长到原来的2倍,再向右平移$\frac{π}{8}$个单位,得到的函数的一个对称中心是(  )
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,0)C.($\frac{π}{6}$,0)D.($\frac{π}{8}$,0)

查看答案和解析>>

同步练习册答案