精英家教网 > 高中数学 > 题目详情
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)渐近线方程为x+2y=0,x-2y=0;
(2)点A(5,0)到双曲线上动点P的距离最小值为
【答案】分析:根据双曲线和其渐近线之间的关系,设出双曲线的方程,根据点A(5,0)到双曲线上动点P的距离最小值为,转化为双曲线与半径为的圆A相切,联立消去y得,利用△=0即可求得双曲线的方程.
解答:解:由渐近线方程为x±2y=0,设双曲线方程为x2-4y2=m,∵点A(5,0)到双曲线上动点P的距离的最小值为
说明双曲线与半径为的圆A相切,
∵圆A方程为(x-5)2+y2=6,与x2-4y2=m联立消去y得:4(x-5)2+x2=24+m 化简得到:5x2-40x+76-m=0,△=402-4×5×(76-m)=0,
解得m=-4 所以满足条件的双曲线方程为x2-4y2=-4,
即y2-=1.
或者双曲线的顶点在(5+,0)渐近线为x±2y=0,双曲线方程为:
所以所求双曲线方程为:y2-=1,
点评:考查双曲线的简单的几何性质,特别是双曲线方程与其渐近线方程之间的关系,已知双曲线的方程求其渐近线方程时,令即可,反之,如此题设双曲线方程为x2-4y2=m,避免了讨论,条件(2)的设置增加了题目的难度,体现了转化的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)渐近线方程为x+2y=0,x-2y=0;
(2)点A(5,0)到双曲线上动点P的距离最小值为
6

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在同时满足下列条件的双曲线?若存在,请求出其方程,若不存在请说明理由.
(1)中心在原点,准线平行于X轴;
(2)离心率e=
5
2

(3)点A(0,5)到双曲线上的动点P的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.
(1)渐近线方程为x+2y=0,x-2y=0;
(2)点A(5,0)到双曲线上动点P的距离最小值为数学公式

查看答案和解析>>

同步练习册答案