精英家教网 > 高中数学 > 题目详情

己知等比数列{}的公比为q,前n项和为Sn,且S1,S3,S2成等差数列.
(I)求公比q;
(II)若,问数列{Tn}是否存在最大项?若存在,求出该项的值;若不存在,请说明理由。

(I)(II) 最大项为

解析试题分析:(I) S1,S3,S2成等差数列,所以
(II)数列{}通项为,所以当最大为
考点:等比数列通项等差数列求和
点评:本题主要考查的知识点有:等比数列中,等差数列中,三个数成等差数列,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等比数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,
(1)求的通项公式.
(2)记数列的前三项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:.
(1)求
(2) 证明数列为等差数列,并求数列的通项公式;
(3)设,求实数为何值时恒成立。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知数列为等比数列,且,该数列的各项都为正数,求;(2)若等比数列的首项,末项,公比,求项数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列中,已知,公比,等差数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公比大于1的等比数列{}满足:++=28,且+2是的等差中项.(Ⅰ)求数列{}的通项公式;
(Ⅱ)若=,求{}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是等比数列的前项和, 公比,已知1是的等 差中项,6是的等比中项,
(1)求此数列的通项公式 
(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设数列的前项和为,满足,且
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)设数列的前项和为,且,证明:对一切正整数, 都有:

查看答案和解析>>

同步练习册答案