【题目】已知过点的直线l:与抛物线E:()交于B,C两点,且A为线段的中点.
(1)求抛物线E的方程;
(2)已知直线:与直线l平行,过直线上任意一点P作抛物线E的两条切线,切点分别为M,N,是否存在这样的实数m,使得直线恒过定点A?若存在,求出m的值;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,、、两两垂直,,,,为线段上一点(端点除外).
(1)若异面直线、所成角的余弦值为,求的长;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.
根据该折线统计图,下面说法错误的是
A. 这10年中有3年的GDP增速在9.00%以上
B. 从2010年开始GDP的增速逐年下滑
C. 这10年GDP仍保持6.5%以上的中高速增长
D. 2013年—2018年GDP的增速相对于2009年—2012年,波动性较小
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱中,平面ABCD,底面ABCD是矩形,,,,M为的中点.
(1)求证:D1M//平面BDC1;
(2)若棱上存在点Q,满足与平面所成角的正弦值为,求异面直线与BQ所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点的直线l:与抛物线E:()交于B,C两点,且A为线段的中点.
(1)求抛物线E的方程;
(2)已知直线:与直线l平行,过直线上任意一点P作抛物线E的两条切线,切点分别为M,N,是否存在这样的实数m,使得直线恒过定点A?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正三棱锥P﹣ABC中,PA,PB,PC两两垂直,,点E在线段AB上,且AE=2EB,过点E作该正三棱锥外接球的截面,则所得截面圆面积的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,亚洲热带地区广泛栽培.槟榔是重要的中药材,南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解,两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,经他们平均每周咀嚼槟榔的颗数作为样本,绘制成如图所示的茎叶图(图中的茎表示十位数字,叶表示个位数字).
(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多?
(2)在被抽取的10名学生中,从平均每周咀嚼槟榔的颗数不低于20颗的学生中随机抽取3名学生,求抽到班学生人数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中,随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是:选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.
(1)请根据以上调查结果将下面列联表补充完整,并判断能否有的把握认为“恋家(在家里感到最幸福)”与城市有关:
在家里最幸福 | 在其它场所最幸福 | 合计 | |
洛阳高中生 | |||
上海高中生 | |||
合计 |
(2) 从被调查的不“恋家”的上海学生中,用分层抽样的方法选出4人接受进一步调查,从被选出的4 人中随机抽取2人到洛阳交流学习,求这2人中含有在“个人空间”感到幸福的学生的概率.
附:,其中d.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com