精英家教网 > 高中数学 > 题目详情

【题目】已知过点的直线l与抛物线E)交于BC两点,且A为线段的中点.

1)求抛物线E的方程;

2)已知直线与直线l平行,过直线上任意一点P作抛物线E的两条切线,切点分别为MN,是否存在这样的实数m,使得直线恒过定点A?若存在,求出m的值;若不存在,说明理由.

【答案】(1);(2)存在实数使得命题成立

【解析】

(1)直线方程与抛物线方程联立,借助韦达定理即可求得,得出抛物线方程;

(2)MN点的坐标分别为,直线上任意一点,由,利用导数的几何意义可得点M处的切线方程和点N处的切线方程,由都满足上述两个方程,即有可得直线的方程即为:,代入即可得出存在实数使得命题成立.

1)由

依题意.

故抛物线E的方程为:.

2)设MN点的坐标分别为,直线上任意一点

,可得点M处的切线的方程为:

N处的切线的方程为:

都满足上述两个方程,∴

∴直线的方程为:

∵直线恒过定点,∴,得

故存在实数使得命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,两两垂直,为线段上一点(端点除外).

1)若异面直线所成角的余弦值为,求的长;

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家统计局统计了我国近10年(2009年2018年)的GDP(GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.

根据该折线统计图,下面说法错误的是

A. 这10年中有3年的GDP增速在9.00%以上

B. 从2010年开始GDP的增速逐年下滑

C. 这10年GDP仍保持6.5%以上的中高速增长

D. 2013年—2018年GDP的增速相对于2009年—2012年,波动性较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,平面ABCD,底面ABCD是矩形,M的中点.

1)求证:D1M//平面BDC1

2)若棱上存在点Q,满足与平面所成角的正弦值为,求异面直线BQ所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的直线l与抛物线E)交于BC两点,且A为线段的中点.

1)求抛物线E的方程;

2)已知直线与直线l平行,过直线上任意一点P作抛物线E的两条切线,切点分别为MN,是否存在这样的实数m,使得直线恒过定点A?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥PABC中,PAPBPC两两垂直,,点E在线段AB上,且AE2EB,过点E作该正三棱锥外接球的截面,则所得截面圆面积的最小值是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】槟榔原产于马来西亚,中国主要分布在云南、海南及台湾等热带地区,亚洲热带地区广泛栽培.槟榔是重要的中药材,南方一些少数民族还有将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,经他们平均每周咀嚼槟榔的颗数作为样本,绘制成如图所示的茎叶图(图中的茎表示十位数字,叶表示个位数字).

(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多?

(2)在被抽取的10名学生中,从平均每周咀嚼槟榔的颗数不低于20颗的学生中随机抽取3名学生,求抽到班学生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高中生在被问及“家朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从洛阳的高中生中随机抽取了55人,从上海的高中生中随机抽取了45人进行答题.洛阳高中生答题情况是选择家的占、选择朋友聚集的地方的占、选择个人空间的占.上海高中生答题情况是:选择朋友聚集的地方的占、选择家的占、选择个人空间的占.

(1)请根据以上调查结果将下面列联表补充完整并判断能否有的把握认为“恋家在家里感到最幸福”与城市有关

在家里最幸福

在其它场所最幸福

合计

洛阳高中生

上海高中生

合计

(2) 从被调查的不“恋家”的上海学生中用分层抽样的方法选出4人接受进一步调查从被选出的4 人中随机抽取2人到洛阳交流学习求这2人中含有在“个人空间”感到幸福的学生的概率.

其中d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,设平面平面.

1)证明:

2)若平面平面,求四棱锥的体积.

查看答案和解析>>

同步练习册答案