精英家教网 > 高中数学 > 题目详情

【题目】已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)= 关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是

【答案】(2 ,+∞)
【解析】解:根据“对称函数”的定义可知,
即h(x)=6x+2b﹣
若h(x)>g(x)恒成立,
则等价为6x+2b﹣
即3x+b> 恒成立,
设y1=3x+b,y2=
作出两个函数对应的图象如图,
当直线和上半圆相切时,圆心到直线的距离d=
即|b|=2
∴b=2 或﹣2 ,(舍去),
即要使h(x)>g(x)恒成立,
则b>2
即实数b的取值范围是(2 ,+∞),
所以答案是:(2 ,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.

若平均投入生产两种产品,可获得多少利润?

问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本数据x1 , x2 , …,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1 , y2 , …,y10的均值和方差分别为(
A.1+a,4
B.1+a,4+a
C.1,4
D.1,4+a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6


(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5

(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程

(3)试预测加工10个零件需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在锐角中,角所对的边分别为,且

(1)求角大小;

(2)当时,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.

1)求所取3张卡片上的数字完全相同的概率;

2表示所取3张卡片上的数字的中位数,求的分布列与数学期望.

(注:若三个数满足,则称为这三个数的中位数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机将1,2,…,2n(n∈N* , n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1 , 最大数为a2;B组最小数为b1 , 最大数为b2;记ξ=a2﹣a1 , η=b2﹣b1
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C, 表示C的对立事件,判断P(C)和P( )的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案