精英家教网 > 高中数学 > 题目详情
已知公差大于零的等差数列an的前n项和为Sn,且满足a1a6=21,S6=66.
(Ⅰ)求数列an的通项an
(Ⅱ)若数列bn使bn=xan+3,求数列bn前n项之和Tn
(Ⅲ)若数列cn是等差数列,且cn=
Snn+p
,求非零常数p.
分析:(1):利用待定系数法:即设出首项和公差,列出方程即可解出首项和公差,从而得通项公式.
(2):将数列an的通项代入bn,即可求出bn通项.再利用等比数列n项和公式得解.
(3):将等差数列an的前n项和为Sn,代入数列cn=
Sn
n+p
中,从而得cn通项,又有等差中项性质可得解.
解答:解:(Ⅰ)由题
a1+a6=22
a1a6=21
∵d>0?
a1=1
a6=21

d=
21-1
6-1
=4
∴an=4n-3
(Ⅱ)由bn=x4n得{bn}是以x4为首项,x4为公比的等比数列
当x=±1时,Tn=n当x≠±1时,Tn=
x4(1-x4n)
1-x4

(Ⅲ)又Sn=n+
n(n-1)
2
×4
=2n2-n∴cn=
2n2-n
n+p

∵cn是等差数列∴2•
6
2+p
=
1
1+p
+
15
3+p

∴p=0或p=-
1
2
点评:本题是等差数列和等比数列的综合题:
(1)可利用求解数列题的一般方法:待定系数法求解.
(2)求等比数列前n项和时,注意公比的讨论.
(3)等差数列中等差中项的性质及应用是高考中的热点.要引起足够重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列an的通项公式an
(2)若数列bn是等差数列,且bn=
Sn
n+c
,求非零常数c;
(3)若(2)中的bn的前n项和为Tn,求证:2Tn-3bn-1
64bn
(n+9)bn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式an
(2)若数列{bn}是等差数列,且bn=
Snn+c
,求非零常数c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an},前n项和为Sn.且满足a3a4=117,a2+a5=22.
(Ⅰ)求数列an的通项公式;
(2)若bn=
Sn
n-
1
2
,求f(n)=
bn
(n+36)bn+1
(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=22,
(1)求通项an
(2)若数列{bn}满足bn=
Snn+c
,是否存在非零实数c,使得{bn}为等差数列?若存在,求出c的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•烟台一模)已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18.
(1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值;
(2)设bn=
n(2n+1)Sn
,是否存在一个最小的常数m使得b1+b2+…+bn<m对于任意的正整数n均成立,若存在,求出常数m;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案