精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x2+
1
2
x(x<0)
ex-1(x≥0)
,若函数y=f(x)-kx有3个零点,则实数k的取值范围是
 
考点:函数零点的判定定理,分段函数的应用
专题:函数的性质及应用
分析:由f(0)=ln1=0,可得:x=0是函数y=f(x)-kx的一个零点;当x<0时,由f(x)=kx,得-x2+
1
2
x=kx,解得x=
1
2
-k,由x=
1
2
-k<0,可得:k>
1
2
;当x>0时,函数f(x)=ex-1,由f'(x)∈(1,+∞),进而可得k>1;综合讨论结果,可得答案.
解答: 解:∵函数f(x)=
-x2+
1
2
x(x<0)
ex-1(x≥0)

∴f(0)=ln1=0,
∴x=0是函数y=f(x)-kx的一个零点,
当x<0时,由f(x)=kx,
得-x2+
1
2
x=kx,
即-x+
1
2
=k,解得x=
1
2
-k,
由x=
1
2
-k<0,解得k>
1
2

当x>0时,函数f(x)=ex-1,
f'(x)=ex∈(1,+∞),
∴要使函数y=f(x)-kx在x>0时有一个零点,
则k>1,
∴k>1,
即实数k的取值范围是(1,+∞),
故答案为:(1,+∞)
点评:本题考查的知识点是函数零点及零点的个数,二次函数的图象和性质,指数型函数的图象和性质,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+1)=f(x-1),且当x∈[-1,1]时,f(x)=x2,则函数y=f(x)与函数y=lgx的图象的交点个数为(  )
A、7个B、8个C、9个D、10个

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2-4x-6y-1=0的圆心,且与直线x-y=0垂直的直线方程为(  )
A、x-y+1=0
B、x+y+5=0
C、x+y-5=0
D、x-y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈C,方程x2-2x+2=0的两根之比为(  )
A、iB、-iC、±iD、1±i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)在[0,+∞)上为增函数,且f(2x-1)<f(1),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=1,|
b
|=2,
a
⊥(
a
+
b
),则向量
a
b
夹角的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P:函数f(x)=(
1
3
)x
-sinx至少有两个零点,对于命题P的否定,下列说法正确的是(  )
A、命题P的否定:函数f(x)=(
1
3
)x-sinx
至多有两个零点,且命题P的否定是真命题
B、命题P的否定:函数f(x)=(
1
3
)x-sinx
至多有一个零点,且命题P的否定是真命题
C、命题P的否定:函数f(x)=(
1
3
)x-sinx
至多有两个零点,且命题P的否定是假命题
D、命题P的否定:函数f(x)=(
1
3
)x-sinx
至多有一个零点,且命题P的否定是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足条件
2x+y≥4
x-y≥1
x-2y≤2
,则z=x+2y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
x
-a(x2-2x-3),其中a为参数,且a∈R.
(Ⅰ)若a=-1,求f(x)的单调区间;
(Ⅱ)若对于任意的x∈(0,4],都有f(x)≥0恒成立,求参数a的取值范围.

查看答案和解析>>

同步练习册答案