精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,求函数在点处的切线方程;

(2)对于任意的的图象恒在图象的上方,求实数a的取值菹围.

【答案】(1);(2)

【解析】

(1)求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)由题意得恒成立则需求出函数的最小值即可,但由于的零点不易求出,故通过再次求导的方法逐步求解,进而求得的最小值

(1)当时,

函数在点处的切线方程为

(2)由题知当时,恒成立,

即当时,恒成立

等价于恒成立

上单调递增

存在唯一零点

使得

且当时,单调递减时,单调递增

,

单调递增.

,

故实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD和矩形ABEF中,,矩形ABEF可沿AB任意翻折.

1)求证:当点FAD不共线时,线段MN总平行于平面ADF.

2)“不管怎样翻折矩形ABEF,线段MN总与线段FD平行”这个结论正确吗?如果正确,请证明;如果不正确,请说明能否改变个别已知条件使上述结论成立,并给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体的各棱长均为2,分别为棱的中点,以为圆心、1为半径,分别在面、面内作弧,并将两弧各分成五等份,分点顺次为以及.一只甲虫欲从点出发,沿四面体表面爬行至点,则其爬行的最短距离为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内切在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设.问:对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意实数,定义设函数,则函数的最大值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为

1)求过点且与圆相切的直线的方程;

2)直线过点,且与圆交于两点,若,求直线的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若直线过点且到圆心的距离为,求直线的方程;

2)设过点的直线与圆交于两点(的斜率为负),当时,求以线段为直径的圆的方程.

查看答案和解析>>

同步练习册答案