精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=|x+1|+2|xm|

1)当m2时,求fx≤9的解集;

2)若fx≤2的解集不是空集,求实数m的取值范围.

【答案】(1)[24](2)[31]

【解析】

1)当m2时,函数fx)=|x+1|+2|x2|≤9,x分类讨论,分别在三个区间,去掉绝对值求解不等式即可求得解集;

2)若fx≤2的解集不是空集,转化为fxmin≤2成立,又根据|x+1|+|xm|≥|m+1|恒成立,fxmin|m+1|≤2,解得﹣3≤m≤1.

1)当m2时,fx)=|x+1|+2|x2|.

fx≤9,∴

2x≤4或﹣1≤x≤2或﹣2≤x<﹣1

∴﹣2≤x≤4

∴不等式的解集为[24]

2)∵fx≤2的解集不是空集,

fxmin≤2.

|x+1|+|xm|≥|m+1||xm|≥0

fx)=|x+1|+2|xm|≥|m+1|,当且仅当xm时取等号,

|m+1|≤2,∴﹣3≤m≤1

∴实数m的取值范围为[31].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛,经过初赛、复赛,甲、乙两个代表队(每队人)进入了决赛,规定每人回答一个问题,答对为本队赢得分,答错得分,假设甲队中每人答对的概率均为,乙队中人答对的概率分別为,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.

(1)求的分布列;

(2)求甲、乙两队总得分之和等于分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数,记.把函数的最大值称为函数线性拟合度”.

1)设函数,求此时函数线性拟合度

2)若函数的值域为),,求证:

3)设,求的值,使得函数线性拟合度最小,并求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求a的值;

(2)在(1)的条件下,若存在,使,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥SABCD中,SA⊥底面ABCD,底面ABCD是平行四边形,E是线段SD上一点.

1)若ESD的中点,求证:SB∥平面ACE

2)若SAABAD2SC2,且DEDS,求二面角SACE的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中a为常数,设e为自然对数的底数.

1)当时,求过切点为的切线方程;

2)若在区间上的最大值为,求a的值;

3)若不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:过点(0,1)且离心率.

()求椭圆E的方程;

()设动直线l与两定直线l1:xy=0l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直四棱柱的侧棱长为,底面是边长的矩形,的中点,

1)求证:平面

2)求异面直线所成的角的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是棱长为2的正方体的棱的中点.如图,以为坐标原点,射线分别是轴、轴、轴的正半轴,建立空间直角坐标系.

1)求向量的数量积;

2)若点分别是线段与线段上的点,问是否存在直线平面?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案