【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是89.
(1)求和的值;
(2)计算乙班7位学生成绩的方差.
(3)从成绩在90分以上的学生中随机抽取两名学生,求乙班至少有一名学生的概率.
【答案】(1)x=5,y=3;(2)40;(3)
【解析】试题分析:(1)根据平均数计算公式可求,中位数是指将一组数据按照从小到大或者从大到小的顺序排成一列,如果是奇数个数,中位数是最中间的数;如果是偶数个数,中位数是最中间两个数的平均数,由题知;(2)甲班七名学生成绩已知,代入方差计算公式即可;(3)记事件=“从中抽取两名学生,甲班至少有一名学生”,把成绩在90分以上的学生编号,列出从中抽取两名学生的基本事件总数以及事件包含的基本事件总数,代入古典概型的概率计算公式可求;至少、至多问题的概率还可以根据对立事件的概率来求,即.
试题解析:(1)由=85,得,所以=5,将数字按照从小到大的顺序排列,第四个数字是中位数,所以;
(2)=40;
(3)成绩在90分以上的学生共有5名,其中甲班有两名,记为a,b,乙班3名,记为1,2,3,从中任取两名,基本事件为有, , , ,共10个,记事件=“从中抽取两名学生,甲班至少有一名学生”,则事件包含的基本事件有, , ,共7个,所以.
科目:高中数学 来源: 题型:
【题目】设函数
(1)若不等式对恒成立,求的值;
(2)若在内有两个极值点,求负数的取值范围;
(3)已知,若对任意实数,总存在实数,使得成立,求正实数的取值集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且Sn=2n﹣1.数列{bn}满足b1=2,bn+1﹣2bn=8an .
(1)求数列{an}的通项公式.
(2)证明:数列{ }为等差数列,并求{bn}的通项公式.
(3)求{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家父母记录了女儿玥玥的年龄(岁)和身高(单位cm)的数据如下:
年龄x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
(1)试求y关于x的线性回归方程 = x+
(2)试预测玥玥10岁时的身高.(其中, = , = ﹣ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数{an}:a1=t,n2Sn+1=n2(Sn+an)+an2 , n=1,2,….
(1)设{an}为等差数列,且前两项和S2=3,求t的值;
(2)若t= ,证明: ≤an<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为2的正方体中, , , , 分别是棱, , , 的中点,点, 分别在棱, 上移动,且.
(1)当时,证明:直线平面;
(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (k>0).
(1)若f(x)>m的解集为{x|x<﹣3或x>﹣2},求不等式5mx2+ x+3>0的解集;
(2)若存在x>3使得f(x)>1成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅰ)根据题目完成列联表,并据此判断是否有的把握认为环保知识成绩优秀与学生的文理分类有关.
(Ⅱ)现已知, , 三人获得优秀的概率分别为, , ,设随机变量表示, , 三人中获得优秀的人数,求的分布列及期望.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 若4Sn=(2n﹣1)an+1+1,且a1=1.
(1)求数列{an}的通项公式;
(2)设cn= ,数列{cn}的前n项和为Tn .
①求Tn;
②对于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com