分析 利用向量的平行四边形法则、中点的向量表示即可得出.
解答 证明:如图所示,
∵D,E,F分别为BC,CA,AB的中点,
∴$\overrightarrow{AD}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{BE}$=$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$,$\overrightarrow{CF}$=$\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$.
∴$\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=$\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$+$\frac{1}{2}(\overrightarrow{BA}+\overrightarrow{BC})$+$\frac{1}{2}(\overrightarrow{CA}+\overrightarrow{CB})$
=$\overrightarrow{0}$.
∴$\overrightarrow{AD}$+$\overrightarrow{BE}$+$\overrightarrow{CF}$=$\overrightarrow{0}$.
点评 本题考查了向量的平行四边形法则、中点的向量表示,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com