精英家教网 > 高中数学 > 题目详情
设α、β∈(0,
π
2
)
,则α+β=
π
2
是sin2α+sin2β=sin2(α+β)成立的(  )
分析:利用同角三角函数的故选先判断出若α+β=
π
2
成立能推出sin2α+sin2β=sin2(α+β)成立;再利用二倍角公式及和化积公式判断出若sin2α+sin2β=sin2(α+β)成立能推出α+β=
π
2
.利用充要条件的定义得到答案.
解答:解:若α+β=
π
2
成立,则有sin2α+sin2β=sin2α+sin2(
π
2
-α )
=sin2α+cos2α=1;
sin2(α+β)=sin2
π
2
=1,所以sin2α+sin2β=sin2(α+β)成立;
反之,若sin2α+sin2β=sin2(α+β)成立,则有
1-cos2α
2
+
1-cos2β
2
=1-cos2(α+β)
1
2
(cos2α+cos2β)
=cos2(α+β)
即cos(α+β)cos(α-β)=cos2(α+β)
所以cos(α+β)[cos(α+β)-cos(α-β)]=0,
所以cos(α+β)=0或[cos(α+β)=cos(α-β)]
所以α+β=
π
2
或α=0或β=0,
又因为α、β∈(0,
π
2
)

所以α+β=
π
2

所以α+β=
π
2
是sin2α+sin2β=sin2(α+β)成立的充要条件.
故选C.
点评:本题考查同角三角函数的故选、和、差化积公式及三角函数的二倍角公式;利用充要条件的有关定义判断一个条件是另一个条件的什么条件问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
-cos2(x+
π
4
)+sin(x+
π
4
)cos(x+
π
4
)

(I)求函数f(x)的最大值和周期;
(II)设角α∈(0,2π),f(α)=
2
2
,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到定点F1(-2,0)和F2(2,0)的距离之和为4
2

(I)求动点M轨迹C的方程;
(II)设N(0,2),过点P(-1,-2)作直线l,交椭圆C异于N的A、B两点,直线NA、NB的斜率分别为k1、k2,证明:kl+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈(0,
π
2
),则下列所有正确结论的序号为
②⑥
②⑥

①sinx
2
π
x;②sinx
2
π
x;③sinx
3
π
x;④sinx
3
π
x;⑤sinx
4
π2
x2; ⑥sinx
4
π2
x2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;
(2)设a∈(0,
π
2
),则f(
a
2
)=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛一模)已知点A(2,0),B(0,-2),F(-2,0),设∠AOC=α,α∈[0,2π),其中O为坐标原点.
(Ⅰ)设点C到线段AF所在直线的距离为
3
,且∠AFC=
π
3
,求α和线段AC的大小;
(Ⅱ)设点D为线段OA的中点,若|
OC
|=2
,且点C在第二象限内,求M=(
3
DC
OB
+
BC
OA
)cosα的取值范围.

查看答案和解析>>

同步练习册答案