精英家教网 > 高中数学 > 题目详情
19.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的焦点到渐近线的距离为a,则函数y=logax在区间[1,2]上的值域为(  )
A.[0,1]B.[0,2]C.[1,2]D.[1,4]

分析 先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式求出a,即可求出结论.

解答 解:由题得:其焦点坐标为(-$\sqrt{6}$,0),($\sqrt{6}$,0).渐近线方程为y=±$\frac{\sqrt{2}}{2}$x,即x±$\sqrt{2}$y=0,
∴焦点到其渐近线的距离d=$\frac{\sqrt{6}}{\sqrt{1+2}}$=$\sqrt{2}$,
∴函数y=logax在区间[1,2]上的值域为[0,2].
故选:B.

点评 本题以双曲线方程为载体,考查双曲线的标准方程,考查双曲线的几何性质,考查对数函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.P($\sqrt{2}$,1)是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的一点,且|PF1|-|PF2|=2,若抛物线的顶点是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的中心,焦点是双曲线的右顶点.
(1)求双曲线的渐近线与抛物线的准线方程;
(2)若直线l过点C(2,1)交抛物线于M,N两点,是否存在直线l,使得C恰为弦MN的中点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.到x轴距离为5的点的轨迹是y=5
B.方程$\frac{x}{y}=1$表示的曲线是直角坐标平面上第一象限的角平分线
C.方程(x-y)2+(xy-1)2=0表示的曲线是一条直线和一条双曲线
D.2x2-3y2-2x+m=0通过原点的充要条件是m=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正方体ABCD-A1B1C1D1
(1)哪些棱所在直线与直线BA1是异面直线?
(2)哪些棱所在的直线与AA1垂直?
(3)求A1B与B1D1所成角;
(4)求AC与BD1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)将log232=5化成指数式;
(2)将3-3=$\frac{1}{27}$化成对数式;
(3)log4x=-$\frac{3}{2}$,求x;
(4)已知log2(log3x)=1,求x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的方程x2+ax+2=0.
(1)若方程有两个大于1的不等实根,求实数a的取值范围;
(2)若两实根x1,x2满足0<x1<1<x2<4,求实数a的取值范围;
(3)若两实根x1,x2满足1<x1<x2<4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABDC中,底面ABCD是直角梯形,AB垂直于AD和BC,SA⊥底面ABCD,且SA=AB=BC=1,AD=$\frac{1}{2}$,E为SC的中点.
(1)证明:DE∥平面SAB:
(2)求直线SB与平面SCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.对于等比数列{an},若q>0,且$\underset{lim}{n→∞}$(a1+a2+a3+…+an)=2,求首项a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=$\frac{\sqrt{{x}^{2}+1}}{2x-1}$的导数是(  )
A.$\frac{2+x}{\sqrt{{x}^{2}+1}(2x-1)^{2}}$B.-$\frac{x+2}{\sqrt{{x}^{2}+1}(2x-1)^{2}}$
C.$\frac{4{x}^{2}-x+2}{(2x-1)^{2}}$D.$\frac{4{x}^{2}-x+2}{(2x-1)^{2}\sqrt{{x}^{2}+1}}$

查看答案和解析>>

同步练习册答案