精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求函数的定义域.

)判断在定义域上的单调性,并用单调性定义证明你的结论.

)求函数的值域.

【答案】(1)定义域为;(2)见解析;(3).

【解析】试题分析:1由对任意,有所以定义域为

2 ,分析得,从而得解;

3易得,从而可得,即可得解.

试题解析:

)显然对任意,有的定义域为

)设

为增函数,且

,且恒成立,

于是

上的减函数.

)因为

所以

所以

所以

所以的值域是

点睛: 证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差: ,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列五个命题:

①过点(-1,2)的直线方程一定可以表示为y-2=k(x+1)的形式(k∈R);

②过点(-1,2)且在x轴、y轴截距相等的直线方程是xy-1=0;

③过点M(-1,2)且与直线lAxByC=0(AB≠0)垂直的直线方程是B(x+1)+A(y-2)=0;

④设点M(-1,2)不在直线lAxByC=0(AB≠0)上,则过点M且与l平行的直线方程是A(x+1)+B(y-2)=0;

⑤点P(-1,2)到直线axya2a=0的距离不小于2.

以上命题中,正确的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=lnx﹣x﹣mx在区间[1,e2]内有唯一的零点,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,棱AD=DC=3,DD1=4,E是A1A的中点.
(1)求证:A1C∥平面BED;
(2)求二面角E﹣BD﹣A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的值域;

(2)如果对任意的不等式恒成立,求实数的取值范围;

(3)是否存在实数使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,若sin A=2sin Bcos Csin2A=sin2B+sin2C,试判断ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn= ,Sn为数列{bn}的前n项和,是否存在实数m,使得Sn<m对于任意的n∈N+恒成立?若存在,请求实数m的取值范围,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,

22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )

A. 这种抽样方法是分层抽样

B. 这种抽样方法是系统抽样

C. 这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差

D. 该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形,点 分别为线段 的中点.

)证明平面

)证明平面平面

)在线段上找一点,使得平面,并说明理由.

查看答案和解析>>

同步练习册答案