精英家教网 > 高中数学 > 题目详情
已知双曲线的离心率e=2,且B1、B2分别是双曲线虚轴的上、下端点.
(Ⅰ)若双曲线过点Q(2,),求双曲线的方程;
(Ⅱ)在(Ⅰ)的条件下,若A、B是双曲线上不同的两点,且,求直线AB的方程.

【答案】分析:(Ⅰ)根据双曲线的离心率,求得a和c的关系,进而求得a和b的关系,把点Q代入椭圆方程求得a,进而求得b,则椭圆方程可得.
(Ⅱ)根据判断出A、B2、B三点共线.根据判断出,进而设直线AB的方程和B1B的方程联立求得B的坐标,代入双曲线方程求得k,则直线AB的方程可得.
解答:解:(Ⅰ)∵双曲线方程为
∴c=2a,b2=c2-a2=3a2
∴双曲线方程为,又曲线C过点Q(2,),

∴双曲线方程为
(Ⅱ)∵
∴A、B2、B三点共线.
,∴
(1)当直线AB垂直x轴时,不合题意.
(2)当直线AB不垂直x轴时,由B1(0,3),B2(0,-3),
可设直线AB的方程为y=kx-3,①
∴直线B1B的方程为
由①,②知,代入双曲线方程得
,得k4-6k2+1=0,
解得
故直线AB的方程为
点评:本题主要考查了双曲线的标准方程.考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程;
(2)已知双曲线的离心率e=
5
2
,且与椭圆
x2
13
+
y2
3
=1有共同的焦点,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,F1、F2为两焦点,M为双曲线上一点,若∠F1MF2=60°,且S△MF1F 2=12
3
.求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,且分别是双曲线虚轴的上、下端点  

(Ⅰ)若双曲线过点),求双曲线的方程;

(Ⅱ)在(Ⅰ)的条件下,若是双曲线上不同的两点,且,求直线的方程  

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为

    ①求双曲线C经过二、四象限的渐近线的倾斜角

    ②试判断在椭圆C的长轴上是否存在一定点N(a,0),

 使椭圆上的动点M满足的最小值为3,若存在求出所有可能的a值,若不存在说明理由.

     

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为

    ①求双曲线C经过二、四象限的渐近线的倾斜角

    ②试判断在椭圆C的长轴上是否存在一定点N(a,0),

      使椭圆上的动点M满足的最小值为3,若存

      在求出所有可能的a值,若不存在说明理由.

查看答案和解析>>

同步练习册答案