精英家教网 > 高中数学 > 题目详情
(2012•珠海二模)在平面直角坐标系xoy中,以ox轴为始边做两个锐角α,β,它们的终边都在第一象限内,并且分别与单位圆相交于A,B两点,已知A点的纵坐标为
10
10
,B点的纵坐标为
2
10

(1)求tanα和tanβ的值;
(2)求2α+β的值.
分析:(1)利用三角函数的定义求出sinα和sinβ,然后根据同角三角函数的基本关系求出cosα和cosβ,进而可以求出tanα和tanβ的值;
(2)由两角和与差正切公式求出tan(α+β)和tan(2α+β)的值,然后由正切的特点得出0<α<
π
4
0<β<
π
4
,进而根据特殊角的三角函数值得出答案.
解答:解:(1)由条件得 sinα=
1
10
sinβ=
1
5
2
…(2分)
因为α,β为锐角,故 cosα>0且cosα=
3
10
,同理可得cosβ=
7
5
2
…(4分)
因此tanα=
1
3
tanβ=
1
7
.                 …(6分)
(2)∵tanα=
1
3
tanβ=
1
7

∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
1
3
+
1
7
1-
1
3
×
1
7
=
1
2
…(7分)
tan(2α+β)=tan[α+(α+β)]=
tanα+tan(α+β)
1-tanα•tan(α+β)
=
1
3
+
1
2
1-
1
3
×
1
2
=1  …(8分)
∵0<α<
π
2
,y=tanx在(0,
π
2
)
上单调递增,
tanα<1=tan
π
4
,∴0<α<
π
4
,…(10分)
同理,0<β<
π
4

0<2α+β<
4
…(11分)
从而2α+β=
π
4
…(12分)
点评:本题考查三角函数的定义、两角和的正切、二倍角的正切公式,熟练掌握公式是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•珠海二模)△ABC中,角A、B、C所对的边a、b、c,若a=
3
A=
π
3
cosB=
5
5
,b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)如图1,在边长为4cm的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合于点B,构成一个三棱锥(如图2).
(1)判别MN与平面AEF的位置关系,并给予证明;
(2)证明:平面ABE⊥平面BEF;
(3)求多面体E-AFNM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)(坐标系与参数方程选做题)
曲线ρ=4cosθ关于直线θ=
π4
对称的曲线的极坐标方程为
ρ=4sinθ
ρ=4sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)=
1
3
x3+ax2+bx
(a,b∈R).
(Ⅰ)若曲线C:y=f(x)经过点P(1,2),曲线C在点P处的切线与直线x+2y-14=0垂直,求a,b的值;
(Ⅱ)在(Ⅰ)的条件下,试求函数g(x)=(m2-1)[f(x)-
7
3
x]
(m为实常数,m≠±1)的极大值与极小值之差;
(Ⅲ)若f(x)在区间(1,2)内存在两个不同的极值点,求证:0<a+b<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知单位向量
a
b
,其夹角为
π
3
,则|
a
+
b
|
=(  )

查看答案和解析>>

同步练习册答案