精英家教网 > 高中数学 > 题目详情
已知p>0,动点M到定点F的距离比M到定直线l:x=-p的距离小
(I)求动点M的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上异于原点O的两个不同点,,求△AOB面积的最小值;
(Ⅲ)在轨迹C上是否存在两点P,Q关于直线对称?若存在,求出直线m的方程,若不存在,说明理由.
【答案】分析:(Ⅰ)由题设知动点M到定点F与到定直线的距离相等,点M的轨迹为抛物线,由此可求出轨迹C的方程.
(Ⅱ)设A(x1,y1),B(x2,y2),由题设知x1x2+y1y2=0,x1x2=4p2==16p4,由此导出△AOB面积最小值为4p2
(Ⅲ)设P(x3,y3),Q(x4,y4)关于直线m对称,且PQ中点D(x,y),由题设条件知,y=-pk,再由D(x,y)在上,知点D(x,y)在抛物线外,所以在轨迹C上不存在两点P,Q关于直线m对称.
解答:解:(Ⅰ)∵动点M到定点F与到定直线的距离相等
∴点M的轨迹为抛物线,轨迹C的方程为:y2=2px.(4分)

(Ⅱ)设A(x1,y1),B(x2,y2

∴x1x2+y1y2=0
∵y12=2px1,y22=2px2
∴x1x2=4p2

=
==16p4
∴当且仅当x1=x2=2p时取等号,△AOB面积最小值为4p2.(9分)

(Ⅲ)设P(x3,y3),Q(x4,y4)关于直线m对称,且PQ中点D(x,y
∵P(x3,y3),Q(x4,y4)在轨迹C上
∴y32=2px3,y42=2px4
两式相减得:(y3-y4)(y3+y4)=2p(x3-x4

∴y=-pk
∵D(x,y)在
,点D(x,y)在抛物线外
∴在轨迹C上不存在两点P,Q关于直线m对称.(14分)
点评:本题综合考查轨迹方程和直线与圆锥曲线的位置关系,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p>0,动点M到定点F(
p
2
, 0)
的距离比M到定直线l:x=-p的距离小
p
2

(I)求动点M的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上异于原点O的两个不同点,
OA
OB
=0
,求△AOB面积的最小值;
(Ⅲ)在轨迹C上是否存在两点P,Q关于直线m:y=k(x-
p
2
)(k≠0)
对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:宣武区二模 题型:解答题

已知p>0,动点M到定点F(
p
2
, 0)
的距离比M到定直线l:x=-p的距离小
p
2

(I)求动点M的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上异于原点O的两个不同点,
OA
OB
=0
,求△AOB面积的最小值;
(Ⅲ)在轨迹C上是否存在两点P,Q关于直线m:y=k(x-
p
2
)(k≠0)
对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:《第2章 圆锥曲线与方程》2010年单元测试卷(1)(解析版) 题型:解答题

已知p>0,动点M到定点F的距离比M到定直线l:x=-p的距离小
(I)求动点M的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上异于原点O的两个不同点,,求△AOB面积的最小值;
(Ⅲ)在轨迹C上是否存在两点P,Q关于直线对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年北京市宣武区高考数学二模试卷(理科)(解析版) 题型:解答题

已知p>0,动点M到定点F的距离比M到定直线l:x=-p的距离小
(I)求动点M的轨迹C的方程;
(Ⅱ)设A,B是轨迹C上异于原点O的两个不同点,,求△AOB面积的最小值;
(Ⅲ)在轨迹C上是否存在两点P,Q关于直线对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案