精英家教网 > 高中数学 > 题目详情

【题目】如图,在同一平面内,点P位于两平行直线l1、l2两侧,且P到l1 , l2的距离分别为1,3,点M,N分别在l1 , l2上,| + |=8,则 的最大值为(
A.15
B.12
C.10
D.9

【答案】A
【解析】解:由点P位于两平行直线l1 , l2的同侧,且A到l1 , l2的距离分别为1,3, 可得平行线l1、l2间的距离为2;
以直线l2为x轴,以过点P且与直线l2垂直的直线为y轴,
建立坐标系,如图所示:
由题意可得点P(0,﹣1),直线l1的方程为y=2,
设点M(a,0)、点N(b,2),
=(a,1)、 =(b,3),
+ =(a+b,4);
∵| + |=8,
∴(a+b)2+16=64,
∴a+b=4 ,或a+b=﹣4
当a+b=4 时, =ab+3=a(4 ﹣a)+3=﹣a2+4 a+3,
它的最大值为﹣ +4 ×2 +3=15;
当a+b=﹣3时, =ab+3=a(﹣4 ﹣a)+3=﹣a2﹣4 a+3,
它的最大值为﹣ ﹣4 ×(﹣2 )+3=15;
综上可得, 的最大值为15.
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月74月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列的首项 是数列的前项和,且满足:

.

(1)若成等比数列,求实数的值;

(2)若,求证:数列为等差数列;

(3)在(2)的条件下,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABCABC的三个内角,则在下列各结论中,不正确的为(  )

A. sin2A=sin2B+sin2C+2sinBsinCcos(BC)

B. sin2B=sin2A+sin2C+2sinAsinCcos(AC)

C. sin2C=sin2A+sin2B-2sinAsinBcosC

D. sin2(AB)=sin2A+sin2B-2sinBsinCcos(AB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点, 是椭圆上的点,设动点满足.

1)求动点的轨迹的方程;

2)若直线与曲线相交于 两个不同点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2 , 离心率为 ,点A是椭圆上任一点,△AF1F2的周长为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(﹣4,0)任作一动直线l交椭圆C于M,N两点,记 ,若在线段MN上取一点R,使得 ,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知圆满足:

y轴所得弦长为2

x轴分成两段圆弧,其弧长的比为31

圆心到直线lx-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)求函数的单调递增区间;

(2)ABC内角A,B,C的对边分别为a,b,c,=,b=1, =,ab,试求角B和角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.

查看答案和解析>>

同步练习册答案