精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,ADDCABBCQD⊥平面ABCDPAQDPA=1,ADABQD=2.

(1)求证:平面PAB⊥平面QBC

(2)求该组合体QPABCD的体积.

【答案】(1)见解析;(2)

【解析】(1)证明:因为QD⊥平面ABCDPAQD,所以PA⊥平面ABCD.

BC平面ABCD,所以PABC,因为ABBC,且ABPAA

所以BC⊥平面PAB,又BC平面QBC,所以平面PAB⊥平面QBC.

(2)平面QDB将几何体分成四棱锥BPADQ和三棱锥QBDC两部分,

BBOAD,因为PA⊥平面ABCDBO平面ABCD

所以PABO,又ADOBPAADA

所以BO⊥平面PADQ,即BO为四棱锥BAPQD的高,

因为BOS四边形PADQ=3,

所以VBPADQ·BO·S四边形PADQ

因为QD⊥平面ABCD,且QD=2,

又△BCD为顶角等于120°的等腰三角形,BD=2,SBDC

所以VQBDC·SBDC·QD

所以组合体QPABCD的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知菱形轴上且 ).

Ⅰ)求点轨迹的方程;

Ⅱ)延长交轨迹于点,轨迹在点处的切线与直线交于点,试判断以为圆心,线段为半径的圆与直线的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足,若的最大值为,则实数________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中中,直线,圆的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若直线与圆交于两点,且的面积是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有价值10万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,改造就需要投入,相应就要提高产品附加值,假设附加值万元与技术改造投入万元之间的关系满足:① 的乘积成正比;② 当时,;③,其中为常数,且.

(1)设,求出的表达式,并求出的定义域;

(2)求出附加值的最大值,并求出此时的技术改造投入的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等腰梯形ABCD(如图1所示),其中ABCDEF分别为ABCD的中点,且ABEF=2,CD=6,MBC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图2所示),N是线段CD上一动点,且.

(1)求证:MN∥平面EFDA

(2)求三棱锥AMNF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点关于直线对称的点位于抛物线上.

(1)求抛物线的方程;

(2)设抛物线的准线与其对称轴的交点为,过点的直线交抛物线于点 ,直线交抛物线于另一点,求直线所过的定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某工厂生产线上随机抽取16件零件,测量其内径数据从小到大依次排列如下:1.12,1.25,1.21,1.23,1.25,1.25,1.26,1.30,1.30,1.32,1.34,1.35,1.37,1.38,1.41,1.42.据此可估计该生产线上大约有25%的零件内径小于等于___________,大约有30%的零件内径大于___________mm(单位:mm.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f (x)=ln x-x+1.

(1)讨论函数f (x)的单调性;

(2)证明当x∈(1,+∞)时,

(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.

查看答案和解析>>

同步练习册答案