精英家教网 > 高中数学 > 题目详情
6.在如图的正方形中随机撒一把豆子,用随机模拟的方法估圆周率的值:经查数,落在正方形中的豆子的总数为n粒,其中m(m<n)粒豆子落在该正方形的内切圆内,以此估计圆周率π为(  )
A.$\frac{m}{n}$B.$\frac{2m}{n}$C.$\frac{3m}{n}$D.$\frac{4m}{n}$

分析 根据几何概型的概率公式,即可以进行估计,得到结论.

解答 解:设圆的半径为1.则正方形的边长为2,
根据几何概型的概率公式可以得到$\frac{π•{1}^{2}}{2×2}=\frac{m}{n}$,
即π=$\frac{4m}{n}$,
故选:D.

点评 本题主要考查几何概型的应用,根据几何概型的概率公式,进行估计是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列说法中错误的是(  )
A.平行于同一平面的两个平面平行
B.平行于同一直线的两个平面平行
C.如果一条直线与两个平行平面中的一个相交,则也与另一个平面相交
D.一条直线与两个平行平面所成的角相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3+2x2-5x-6的一个零点为2,求函数的其他零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知集合A={-1,0,1},B={x|x2-x+1},若A∪B=A,则x=0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x的一元二次实系数方程x2+px+q=0有一个根为 1+i,(i为虚数单位),则p+q的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:a1+$\frac{{a}_{2}}{λ}$+$\frac{{a}_{3}}{{λ}^{2}}$+…+$\frac{{a}_{n}}{{λ}^{n-1}}$=n2+2n(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,若bn=$\frac{{{a_n}-(2n+1)•{r^n}}}{{(n+\frac{1}{2})(1+{r^n})}}$(r∈R,r≠-1),求$\lim_{n→∞}{b_n}$
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,是否存在λ≠1,使得不等式(1-λ)Sn+(2n+1)•λn≤3成立,若存在,求实数λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.袋中有若干个黑球,3个白球,2个红球(大小形状相同),从中任取2个球,每取到一个黑球得0分,每取到一个白球得1分,每取到一个红球得2分,已知得0分的概率为$\frac{1}{6}$.求
(1)袋中黑球的个数;
(2)至少得2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.
273830373531
332938342836
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、极差,并判断选谁参加比赛更合适.

查看答案和解析>>

同步练习册答案