精英家教网 > 高中数学 > 题目详情

【题目】为了更好地规划进货的数量,保证蔬菜的新鲜程度,某蔬菜商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下图所示((吨)为买进蔬菜的质量, (天)为销售天数):

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(Ⅰ)根据上表数据在下列网格中绘制散点图;

(Ⅱ)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(Ⅲ)根据(Ⅱ)中的计算结果,若该蔬菜商店准备一次性买进25吨,则预计需要销售多少天.

参考公式: .

【答案】(1)见解析(2)(3)销售17天.

【解析】试题分析:(1)利用描点法作散点图,(2)先求平均数 ;再代公式,利用,即得回归直线方程,(3)实际上求自变量为25时对应的函数值,即将代入回归直线方程,可得预计需要销售17天.

试题解析:(Ⅰ)散点图如图所示:

(Ⅱ)依题意,

回归直线方程为.

(Ⅲ)由(Ⅱ)知,当时, .

即若一次性买进蔬菜25吨,则预计需要销售17天.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,2), =(2,﹣2).
(1)设 =4 + ,求
(2)若 + 垂直,求λ的值;
(3)求向量 方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b

(1)求数列{an}的通项公式;

(2)若数列{bn}满足bnan·2n,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图. 图中A点表示十月的平均最高气温约为,B点表示四月的平均最低气温约为. 下面叙述不正确的是 ( )

A. 各月的平均最低气温都在以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,四边形为平行四边形, 平面,且 .

(Ⅰ)求证:平面平面

(Ⅱ)若直线与平面所成的角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为: ,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为.

(1)求直线和曲线C的普通方程;

(2)在直角坐标系中,过点B(0,1)作直线的垂线,垂足为H,试以为参数,求动点H轨迹的参数方程,并指出轨迹表示的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,三角形为等边三角形, ,且

1)求证: 平面

2)求证:平面平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知圆的圆心在直线上,且过点与直线相切.

)求圆的方程

)设直线与圆相交于两点.求实数的取值范围.

的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥S-ABCD中,底面ABCD为菱形,SD⊥平面ABCD,点ESD的中点.

(1)求证:直线SB∥平面ACE

(2)求证:直线AC⊥平面SBD

查看答案和解析>>

同步练习册答案