精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)若是函数是极值点,1是函数零点,求实数的值和函数的单调区间;

(Ⅱ) 若对任意,都存在为自然对数的底数),使得成立,求实数的取值范围.

【答案】(1)见解析(2)见解析

【解析】 试题分析: (1)求导, ,利用已知条件x=2是函数极值点,1是函数零点,可得a,b的值,进而得到的单调区间; 2构造函数,由b的范围及其范围内的任意性将问题转化为存在,使得,对求导并构造函数,利用分类讨论的方法研究两种情况下的函数正负,最终证明当a>1时,对任意,都存在,使得成立.

试题解析:解:(Ⅰ).

是函数的极值点,∴.

又∵1是函数的零点,∴.

联立,解得:

.

∵在,∴在(0,2)上单调递减;又在

上单调递增.

(Ⅱ)令,则为关于的一次函数且为增函数,

∴要使成立,只需有解.

令:,只需存在,使得.

由于

令:,∴

递增,∴.

(ⅰ)当时,,即

是单调递增,∴,不合题意.

(ⅱ)当时,

,则上单调递减,

∴存在,使得,符合题意.

,则,即

∴存在使得.

∴在成立,∴上单调递减,

∴存在使得成立.

综上所述:当时,对任意,都存在使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 =f(2x
(1)用定义证明函数g(x)在(﹣∞,0)上为减函数.
(2)求g(x)在(﹣∞,﹣1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,
(1)求 的值;
(2)当△ABC的面积最大时,求∠A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心的轨迹方程为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设是曲线上的动点,点的横坐标为,点轴上,的内切圆的方程为,将表示成的函数,并求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】六个面都是平行四边形的四棱柱称为平行六面体.已知在平行四边形ABCD中(如图1),有AC2+BD2=2(AB2+AD2),则在平行六面体ABCD﹣A1B1C1D1中(如图2),AC12+BD12+CA12+DB12等于(

A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥中,侧面 是全等的直角三角形, 是公共的斜边且 ,另一侧面是正三角形.

(1)求证:

(2)若在线段上存在一点,使与平面角,试求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数中,表示同一函数的是(
A.f(x)=x+1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( 2
C.f(x)=2log2x,g(x)=log2x2
D.f(x)=x,g(x)=log22x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足,对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)图象上的点都位于直线y= 的上方,求实数m的取值范围.

查看答案和解析>>

同步练习册答案