【题目】已知函数.
(Ⅰ)若是函数是极值点,1是函数零点,求实数,的值和函数的单调区间;
(Ⅱ) 若对任意,都存在(为自然对数的底数),使得成立,求实数的取值范围.
【答案】(1)见解析(2)见解析
【解析】 试题分析: (1)对求导, ,利用已知条件x=2是函数极值点,1是函数零点,可得a,b的值,进而得到的单调区间; (2)构造函数,由b的范围及其范围内的任意性将问题转化为存在,使得,对求导并构造函数,利用分类讨论的方法研究两种情况下的函数正负,最终证明当a>1时,对任意,都存在,使得成立.
试题解析:解:(Ⅰ).
∵是函数的极值点,∴.
又∵1是函数的零点,∴.
联立,解得:,∴,
,.
∵在,,∴在(0,2)上单调递减;又在,,
∴在上单调递增.
(Ⅱ)令,,则为关于的一次函数且为增函数,
∴要使成立,只需在有解.
令:,只需存在,使得.
由于,,
令:,∴,
∴在递增,∴.
(ⅰ)当时,,即,
∴在是单调递增,∴,不合题意.
(ⅱ)当时,,
若,则上单调递减,
∴存在,使得,符合题意.
若,则,即,
∴存在使得.
∴在上成立,∴在上单调递减,
∴存在使得成立.
综上所述:当时,对任意,都存在使得.
科目:高中数学 来源: 题型:
【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心的轨迹方程为曲线.
(Ⅰ)求曲线的方程;
(Ⅱ)设是曲线上的动点,点的横坐标为,点,在轴上,的内切圆的方程为,将表示成的函数,并求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】六个面都是平行四边形的四棱柱称为平行六面体.已知在平行四边形ABCD中(如图1),有AC2+BD2=2(AB2+AD2),则在平行六面体ABCD﹣A1B1C1D1中(如图2),AC12+BD12+CA12+DB12等于( )
A.2(AB2+AD2+AA12)
B.3(AB2+AD2+AA12)
C.4(AB2+AD2+AA12)
D.4(AB2+AD2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱锥中,侧面, 是全等的直角三角形, 是公共的斜边且, ,另一侧面是正三角形.
(1)求证: ;
(2)若在线段上存在一点,使与平面成角,试求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数中,表示同一函数的是( )
A.f(x)=x+1,g(x)= ﹣1
B.f(x)=|x|,g(x)=( )2
C.f(x)=2log2x,g(x)=log2x2
D.f(x)=x,g(x)=log22x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足,对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)图象上的点都位于直线y= 的上方,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com