精英家教网 > 高中数学 > 题目详情
5.若k∈R,则“方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线”是“k>3”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 先看能否由k>3推出方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线,再看方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线时,能否推出
k>3,结合充分条件、必要条件的定义得出结论.

解答 解:k>3时,方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示焦点在x轴上的双曲线,故必要性成立.
而当方程表示双曲线时,应有 (k-3)•(k+3)>0,∴k>3或k<-3,
∴由方程表示双曲线,不能推出:k>3,即充分性不成立,
综上所述,“方程$\frac{x^2}{k-3}-\frac{y^2}{k+3}=1$表示双曲线”是“k>3”的必要不充分条件.
故选:B.

点评 本题考查双曲线的标准方程、充分条件、必要条件、充要条件的判断方法,双曲线的标准方程的特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知点O(0,0),A(1,1),直线l:x-y+1=0且点P在直线l上,则|PA|+|PO|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个数对是(4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.A={x|(a-2)x2-2(a-2)x-4<0},若A=R(R为实数集),则实数a的取值范围为(  )
A.(-2,2)B.(-2,+∞)C.(-2,2]D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设y=x-lnx,则此函数在区间(0,1)内为(  )
A.单调递增B.单调递减C.有增有减D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的$\frac{1}{4}$,则油桶直立时,油的高度与桶的高度的比值是$\frac{1}{4}$-$\frac{1}{2π}$.(结果保留π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于二项式${(\sqrt{x}-1)^{2005}}$有下列命题:
①该二项展开式中非常数项的系数和是1;   
②该二项展开式中第六项为$C_{2005}^6•{x^{1999}}$;
③该二项展开式中无有理项;
④当x=100时,${(\sqrt{x}-1)^{2005}}$除以100的余数是49.
其中正确的序号是①④.(注:把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C:y=$\frac{1}{4}$x2,点F(0,1),过点F的直线l交抛物线于A、B两点.
(1)若直线l的斜率为1,求A、B的中点坐标和S△OAB
(2)求△OAB的面积为2,求直线l的方程;
(3)是否存在直线m使得以AB为直径的圆始终与直线m相切.(提示:利用对称性,再画一个圆,猜想出m的位置后再利用特殊圆的位置求出直线m的方程,再证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}、{bn}满足:a1=4,an+1=$\sqrt{{a}_{n}+2}$,bn=an-1(n∈N*).
(1)判断并证明数列{an}的单调性;
(2)是否存在常数λ,使得b1b2b3…bn<λ?若存在,求λ的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案