精英家教网 > 高中数学 > 题目详情
对于任意的直线l与平面α,在平面α内必有直线m,使m与l

①平行②相交③垂直④互为异面直线.
分析:由于直线l与平面α的位置关系不能确定,故我们可以分直线l?平面α,直线l∩平面α=A,直线l∥平面α三种情况,进行分类讨论,根据讨论结果,进行归纳分析,即可得到答案.
解答:解:①若直线l?平面α,则平面α内的直线m与l,可能平行也可能相交(包括垂直);
②若直线l∩平面α=A,则平面α内的直线m与l,可能异面也可能相交(包括垂直);
③若直线l∥平面α,则平面α内的直线m与l,可能平行也可能异面(包括垂直);
故①②④均错误,只有③正确
故答案为:③
点评:本题考查的知识点是空间中直线与直线之间的位置关系,由于直线与平面的位置关系不确定,故采用分类讨论思想是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意的直线l与平同a,在平面a内必有直线m,使ml

(A)平行    (B)相交           (C)垂直             (D)互为异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

对于任意的直线l与平同a,在平面a内必有直线m,使m与l


  1. A.
    平行
  2. B.
    相交
  3. C.
    垂直
  4. D.
    互为异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意的直线l与平同a,在平面a内必有直线m,使ml

A.平行         B.相交         C.垂直          D.互为异面直线

查看答案和解析>>

同步练习册答案