精英家教网 > 高中数学 > 题目详情

【题目】已知圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称. (I)求m的值;
(Ⅱ)直线l与圆C交于A,B两点, =﹣3(O为坐标原点),求圆C的方程.

【答案】解:(I)x2+y2+2x+a=0(x+1)2+y2=1﹣a,圆心(﹣1,0).

∵圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称,∴直线过圆心,

∴﹣m+0+1=0m=1,

故m的值为1.

(II)设A(x1,y1),B(x2,y2

=x1x2+y1y2=2x1x2+x1+x2+1

2x2+4x+1+a=0,

根据韦达定理:x1+x2=﹣2;x1x2=

∴1+a﹣2+1=﹣3a=﹣3.

∴圆C的方程是:(x+1)2+y2=4.


【解析】(I)根据圆的对称性判定直线过圆心,先求圆心坐标,再代入直线方程求解;(II)设A、B的坐标,根据向量坐标运算与韦达定理根与系数的关系求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥P﹣ABCD中平面PAB⊥平面ABCD,底面ABCD是正方形.点M是棱PC的中点
(1)记平面ADM与平面PBC的交线是l,试判断直线l与BC的位置关系,并加以证明.
(2)若 ,求证PB⊥平面ADM,并求直线PC与平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的单调递增区间
(Ⅱ)若sin2x+af(x+ )+1>6cos4x对任意x∈(﹣ )恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ax2+bx﹣2<0的解集为{x|﹣2<x< },则ab等于(
A.﹣28
B.﹣26
C.28
D.26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:

产品编号

A1

A2

A3

A4

A5

质量指标
x,y,z

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

产品编号

A6

A7

A8

A9

A10

质量指标
x,y,z

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)


(1)利用上表提供的样本数据估计该批产品的一等品率.
(2)在该样品的一等品中,随机抽取2件产品, ①用产品编号列出所有可能的结果;
②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三1200名学生中随机抽取40名,将他们一次数学模拟成绩绘制成频率分布直方图(如图)(满分为150分,成绩均为不低于80分整数),分为7段:[80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150].
(1)求图中的实数a的值,并估计该高三学生这次成绩在120分以上的人数;
(2)在随机抽取的40名学生中,从成绩在[90,100)与[140,150]两个分数段内随机抽取两名学生,求这两名学生的成绩之差的绝对值标不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F为AD的中点.
(Ⅰ)求证:EF∥面ABC;
(Ⅱ)求证:平面ADE⊥平面ACD;
(Ⅲ)求四棱锥A﹣BCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是城市慢行系统的一种模式创新,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中 x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案