精英家教网 > 高中数学 > 题目详情

【题目】甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.

(1)求x,y的值;

(2)求甲乙所得篮板球数的方差,并指出哪位运动员篮板球水平更稳定;

(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.

【答案】1x=2,y=9;(2),乙更稳定;(3.

【解析】

(1)利用平均数求出x,y的值;(2)求出甲乙所得篮板球数的方差,判断哪位运动员篮板球水平更稳定;(3)利用古典概型的概率求两名运动员所得篮板球之和小于18的概率.

1)由题得

.

(2)由题得

.

因为,所以乙运动员的水平更稳定.

(3)由题得所有的基本事件有(8,8),(8,9),(8,10),(8,11),(8,12),(7,8),(7,9),(7,10),(7,11),(7,12),(10,8),(10,9),(10,10),(10,11),(10,12),(128),(12,9),(12,10),(12,11),(12,12),(13,8),(13,9),(13,10),(13,11),(13,12.25.

两名运动员所得篮板球之和小于18的基本事件有(8,8),(8,9),(7,8),(7,9),(7,10),共5,

由古典概型的概率公式得两名运动员所得篮板球之和小于18的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列的前项和为,公比

(1)求等比数列的通项公式;

(2)设,求的前项和

【答案】(1)(2)

【解析】

1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bnn,由裂项相消求和可得答案.

(1)等比数列的前项和为,公比①,

②.

②﹣①,得,则

,所以

因为,所以

所以

所以

(2)

所以前项和

【点睛】

裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如.

型】解答
束】
22

【题目】已知函数的图象上有两点.函数满足,且

(1)求证:

(2)求证:

(3)能否保证中至少有一个为正数?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,∠DAB60°ACBDO,点P在底面的射影为点OPO3,点E为线段PD中点.

1)求证:PB∥平面AEC

2)若点F为侧棱PA上的一点,当PA⊥平面BDF时,试确定点F的位置,并求出此时几何体FBDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,则在这个新数列中,由1开始的第2 019个数是(  )

A. 3 971B. 3 972C. 3 973D. 3 974

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为改善居民的生活环境,政府拟将一公园进行改造扩建,已知原公园是直径为200米的半圆形,出入口在圆心处,为居民小区,的距离为200米,按照设计要求,以居民小区和圆弧上点为线段向半圆外作等腰直角三角形为直角顶点),使改造后的公园成四边形,如图所示.

1)若时,与出入口的距离为多少米?

2设计在什么位置时,公园的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆C与x轴相切于点T(2,0),与y轴的正半轴相交于A,B两点(A在B的上方),且AB=3.

(1)求圆C的方程;

(2)直线BT上是否存在点P满足PA2+PB2+PT2=12,若存在,求出点P的坐标,若不存在,请说明理由;

(3)如果圆C上存在E,F两点,使得射线AB平分∠EAF,求证:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果A产品的利润为300元/吨,B产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面四个推理:

①由“若是实数,则”推广到复数中,则有“若是复数,则”;

②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;

③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;

④由“直角坐标系中两点的中点坐标为”类比推出“极坐标系中两点的中点坐标为”.

其中,推理得到的结论是正确的个数有( )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如图所示的空间直角坐标系Oxyz

(1)若t=1,求异面直线AC1A1B所成角的大小;

(2)若t=5,求直线AC1与平面A1BD所成角的正弦值;

(3)若二面角A1—BD—C的大小为120°,求实数t的值.

查看答案和解析>>

同步练习册答案