【题目】某工厂用7万元钱购买了一台新机器,运输安装费用2千元,每年投保、动力消耗的费用也为2千元,每年的保养、维修、更换易损零件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,依此类推,即每年增加1千元.
(1)求使用n年后,保养、维修、更换易损零件的累计费用S(千元)关于n的表达式;
(2)问这台机器最佳使用年限是多少年?并求出年平均费用(单位:千元)的最小值.(最佳使用年限是指使年平均费用最小的时间,年平均费用=(购入机器费用+运输安装费用+每年投保、动力消耗的费用+保养、维修、更换易损零件的累计费用)÷机器使用的年数)
科目:高中数学 来源: 题型:
【题目】如图,公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,为.若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记.
(1)试用表示的长;
(2)试确定点的位置,使两条栈道长度之和最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三角形ABC中,,,,D是线段BC上一点,且,F为线段AB上一点.
(1)若,求的值;
(2)求的取值范围;
(3)若为线段的中点,直线与相交于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列{an}的通项公式为________; 前10项的和为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项的和记为Sn.如果a4=-12,a8=-4.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值;
(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:+=1(a>b>0)经过点(1,),且焦距为2.
(1)求椭圆C方程;
(2)椭圆C的左,右焦点分别为F1,F2,过点F2的直线l与椭圆C交于A,B两点,求△F2AB面积S的最大值并求出相应直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为( )
A. B. C. D.
【答案】B
【解析】几何体如图,球心为O,半径为,表面积为,选B.
点睛:涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.
【题型】单选题
【结束】
9
【题目】是双曲线的左右焦点,过且斜率为1的直线与两条渐近线分别交于两点,若,则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com