精英家教网 > 高中数学 > 题目详情

【题目】如图所示,椭圆离心率为是椭圆C的短轴端点,且到焦点的距离为,点M在椭圆C上运动,且点M不与重合,点N满足

(1)求椭圆C的方程;

(2)求四边形面积的最大值.

【答案】 .

【解析】

根据离心率和的长度求得,从而得到椭圆方程;四边形的面积可以表示为:,通过假设直线分别求得,从而将问题转化为函数最值求解问题,从而得到结果.根据不同的假设直线的方式,会构成不同的函数,得到不同的解法.

,解得:

因此椭圆的方程为

法一:设

直线……①;直线……②

由①②解得:

四边形的面积

时,的最大值为

法二:设直线,则直线……①

直线与椭圆的交点的坐标为

则直线的斜率为

直线……②

由①②解得:

四边形的面积:

当且仅当时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】矩形中, ,点中点,沿折起至,如下图所示,点在面的射影落在上.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为其左右焦点,为其上下顶点,四边形的面积为.点为椭圆上任意一点,以为圆心的圆(记为圆)总经过坐标原点.

(1)求椭圆的长轴的最小值,并确定此时椭圆的方程;

(2)对于(1)中确定的椭圆,若给定圆,则圆和圆的公共弦的长是否为定值?如果是,求的值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.

候车时间

人数

1

4

2

2

1

1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);

2)估计这50名乘客的候车时间少于10分钟的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个数列的各项是12,首项是1,且在第1和第1之间有2,即12122122221222222221…,则此数列的前2017项的和______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点长轴长.

1)设直线交椭圆两点,求线段的中点坐标.

2)求过点的直线被椭圆所截弦的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的双曲线的标准方程:

(1)一条渐近线方程为,且与椭圆有相同的焦点;

(2)经过点,且与双曲线有共同的渐近线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为20米,圆心角的扇形展示台,展示台分成了四个区域:三角形,弓形,扇形和扇形(其中.某次菊花展依次在这四个区域摆放:泥金香、紫龙卧雪、朱砂红霜、朱砂红霜.预计这三种菊花展示带来的日效益分别是:泥金香50/,紫龙卧雪30/,朱砂红霜40/.

1)设,试建立日效益总量关于的函数关系式;

2)试探求为何值时,日效益总量达到最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断中正确的是(

A.中,的充要条件是成等差数列

B.的充分不必要条件

C.命题,使得,则的否定:,都有

D.若平面内一动点到定点的距离等于它到定直线的距离,则该动点的轨迹是一条抛物线

查看答案和解析>>

同步练习册答案