精英家教网 > 高中数学 > 题目详情

【题目】已知点,点为曲线上任意一点且满足

1)求曲线的方程;

2)设曲线 轴交于两点,点是曲线上异于的任意一点,直线分别交直线于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.

【答案】1;(2)存在点使得成立.

【解析】

1)设Pxy),由|PA|=2|PB|,得=2,由此能求出曲线的方程.

2)由题意得M(01)N(0-1),设点R(x0y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.

1)设,由

得:

整理得.

所以曲线的方程为.

2)由题意得,.

设点,由点在曲线上,

所以.

直线的方程为

所以直线与直线的交点为.

直线的方程为

所以直线与直线的交点为.

假设存在点,使得成立,

.

整理得.

因为

所以

解得.

所以存在点使得成立,且点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有(

A. 180 B. 150 C. 96 D. 114

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,则下列说法不正确的是( )

A.其图象开口向上,且始终与轴有两个不同的交点

B.无论取何实数,其图象始终过定点

C.其图象对称轴的位置没有确定,但其形状不会因的取值不同而改变

D.函数的最小值大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知为线段上的一点,且,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】, ,的内心,,其中,动点的轨迹所覆盖的面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(ax2+2x+3).

(1)若f(1)=1,求f(x)的单调区间;

(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案