精英家教网 > 高中数学 > 题目详情

【题目】下面几种推理中是演绎推理的序号为(
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列 {an}的通项公式为 (n∈N+
C.半径为r圆的面积S=πr2 , 则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x﹣a)2+(y﹣b)2=r2 , 推测空间直角坐标系中球的方程为(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

【答案】C
【解析】解:选项A是由特殊到一般的推理过程,为归纳推理, 选项B是由特殊的n的值:1,2,3,…到一般的值n的推理过程,为归纳推理,
对于C:半径为r圆的面积S=πr2 , 因为单位圆的半径为1,则单位圆的面积S=π中
半径为r圆的面积S=πr2 , 是大前提
单位圆的半径为1,是小前提
单位圆的面积S=π为结论.
C是演绎推理;
选项D是由特殊到与它类似的另一个特殊的推理过程,
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:
(1)求a2 , a3
(2)猜想{an}通项公式并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax2+(2﹣a)x. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设a>0,证明:当0<x< 时,f( +x)>f( ﹣x);
(Ⅲ)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0 , 证明:f′(x0)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是(
A.5,﹣15
B.5,﹣4
C.﹣4,﹣15
D.5,﹣16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形O为圆心,AB为直径绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;

(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数为f′(x),满足xf′(x)+2f(x)= ,且f(e)=
(Ⅰ)求f(x)的表达式
(Ⅱ)求函数f(x)在[1,e2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点(1,1)且与曲线y=x3相切的切线方程为(
A.y=3x﹣2
B.y= x+
C.y=3x﹣2或y= x+
D.y=3x﹣2或y= x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有一块圆心,半径为200米,圆心角为的扇形绿地,半径的中点分别为为弧上的一点,设,如图所示,拟准备两套方案对该绿地再利用.

(1)方案一:将四边形绿地建成观赏鱼池,其面积记为,试将表示为关于的函数关系式,并求为何值时,取得最大?

(2)方案二:将弧和线段围成区域建成活动场地,其面积记为,试将表示为关于的函数关系式;并求为何值时,取得最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+bx+1的图象经过点(1,﹣3)且在x=1处f(x)取得极值.求:
(1)函数f(x)的解析式;
(2)f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案