精英家教网 > 高中数学 > 题目详情
如图,在一个边长为2的正方形中有一封闭的“★”型阴影区域,向正方形中随机撒入200粒豆子,若恰有40粒落在阴影区域内,则该阴影部分的面积约为(  )
A、
2
5
B、
4
5
C、
6
5
D、
18
5
考点:几何概型
专题:概率与统计
分析:先求出正方形的面积为22,由几何概型的概率知落在阴影区域内的豆子数与200粒豆子的比值等于阴影部分面积与正方形的面积的比.
解答: 解:由题意,豆子落在阴影部分的数量与全部数量的比值恰好是阴影部分的面积与正方形的面积比,所以
S阴影
S正方形
=
40
200
,即
S阴影
4
=
1
5
,所以S阴影=
4
5

故选B,
点评:本题考查利用几何概率求不规则图形的面积;每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型. 解题时要认真审题,合理地运用几何概型解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,且Sn=2an-1.
(Ⅰ)求{an}的通项公式;
(Ⅱ)等差数列{bn}的各项为正,其前n项和为Tn,且T3=12,又a1+b1,a2+b2,a3+b3成等比数列,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AC=
3
,BC=
2
,∠B=60°,则∠A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
4
),
(1)用“五点法”在所给坐标系中作出函数f(x)在区间[0,π]上的图象:(“列表”在解题过程中不可省略)

(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为2的正方形ABCD的内部任取一点P,使得点P到正方形ABCD各顶点的距离都大于1的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列各图中,其中,每个图的来年改革变量具有相关关系的图是
 
.(把所有正确序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x+2)2+y2=4与圆x2+y2-4x-2y-4=0的位置关系为(  )
A、内切B、相交C、外切D、相离

查看答案和解析>>

科目:高中数学 来源: 题型:

设i是虚数单位,复数
7+4i
1+2i
=(  )
A、3+2iB、3-2i
C、2+3iD、2-3i

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线2x2-y2=1的离心率为(  )
A、
6
2
B、
3
C、
2
D、
2
2

查看答案和解析>>

同步练习册答案