精英家教网 > 高中数学 > 题目详情
16.程序框图如图所示,现输入如下四个函数:f(x)=$\frac{1}{x}$,f(x)=x4,f(x)=2x,f(x)=x-$\frac{1}{x}$,则可以输出的函数是(  )
A.f(x)=$\frac{1}{x}$B.f(x)=x4C.f(x)=2xD.f(x)=x-$\frac{1}{x}$

分析 该程序的作用是输出满足条件①f(x)+f(-x)=0,即函数f(x)为奇函数②f(x)存在零点,即函数图象与x轴有交点.逐一分析四个函数,不难得到正确答案.

解答 解:由题得输出的函数要满足是奇函数且有零点,
f(x)=$\frac{1}{x}$与x轴无交点,故不存在零点,故不符合题意;
f(x)=x4是偶函数,故不符合题意;
f(x)=2x是非奇非偶函数,故不符合题意;
f(x)=x-$\frac{1}{x}$是奇函数,且存在零点,符合题意,
故只有f(x)=x-$\frac{1}{x}$符合题意,
故选:D.

点评 本题主要考查使用框图,函数的基本性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若z•i=1-2i(i为虚数单位),则z的共轭复数是(  )
A.-2-iB.2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$一个周期的图象如图所示,则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow{a}$=(3,-1),|$\overrightarrow{b}$|=$\sqrt{5}$,$\overrightarrow{a}$$•\overrightarrow{b}$=-5,$\overrightarrow{c}$=x$\overrightarrow{a}$+(1-x)$\overrightarrow{b}$.
(Ⅰ)若$\overrightarrow{a}$$⊥\overrightarrow{c}$,求实数x的值;
(Ⅱ)当|$\overrightarrow{c}$|取最小值时,求$\overrightarrow{b}$与$\overrightarrow{c}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知经过M(-2,m),N(m,4)的直线的斜率等于1,则m的值为(  )
A.1B.3C.4D.3或4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-ax,(e为自然对数的底数).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对任意实数x恒有f(x)≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某产品的广告费用x(万元)与销售额y(万元)的统计数据如下表所示,根据表中的数据可得回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{a}$=0,据此模型预报,当广告费用为7万元时的销售额为(  )
x4235
y38203151
A.60B.70C.73D.69

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中错误的个数为:(  )
①y=$\frac{1}{2}+\frac{1}{{{2^x}-1}}$的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y=$\frac{1}{{{x^2}-1}}$的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x=$\frac{π}{4}$对称.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设fn(x)是等比数列1,-x,x2,…,(-x)n的各项和,则f2016(2)等于(  )
A.$\frac{{{2^{2016}}+1}}{3}$B.$\frac{{{2^{2016}}-1}}{3}$C.$\frac{{{2^{2017}}+1}}{3}$D.$\frac{{{2^{2017}}-1}}{3}$

查看答案和解析>>

同步练习册答案