精英家教网 > 高中数学 > 题目详情

0<a<数学公式是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的


  1. A.
    充分非必要条件
  2. B.
    必要非充分条件
  3. C.
    充要条件
  4. D.
    非充分非必要条件
A
分析:分类讨论:①当a<0时,不那组题意,②当a=0时,满足题意③a>0时,二次函数对应的抛物线开口向上,对称轴为x=,函数的减区间是(-∞,],要使函数在区间(-∞,4]上为减函数,则需区间(-∞,4]在对称轴左侧,即≥4,解之可得a的范围.综合可得其充要条件是0≤a≤,由集合的包含关系可得答案.
解答:①当a<0时,二次函数对应的抛物线开口向下,对称轴为x=
故f(x)在(-∞,]上单调递增,不可能满足在区间(-∞,4]上为减函数.
②当a=0时,f(x)=-2x+2,此时f(x)是一次函数,满足在区间(-∞,4]上为减函数.
③a>0时,二次函数对应的抛物线开口向上,对称轴为x=
函数的减区间是(-∞,],要使函数在区间(-∞,4]上为减函数,
则需区间(-∞,4]在对称轴左侧,所以≥4,解得a≤
综上可得函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的充要条件是0≤a≤
因为{a|0<a<}是{a|0≤a≤}的真子集,
所以0<a<是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的充分不必要条件,
故选A
点评:本题考查充要条件的判断,涉及二次函数的单调性,以及分类讨论的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题:
①设
a
b
c
是互不共线的非零向量,则(
a
b
c
-(
c
a
b
=
0

②“a=1”是“函数f(x)=lg(ax+1)在(0,+∞)单调递增”的充分不必要条件;
③已知α,β∈R,则“α=β”是“tanα=tanβ”的充要条件;
④函数f(x)=2x-x2的在(1,3)上至少一个零点;
x-1
(x-2)≥0
的解集为[2,+∞);
⑥函数y=x3在x=0处切线不存在.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

0<a≤
15
”是“函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上的减函数”的
充分不必要
充分不必要
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆叙道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2cl和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有a1-c1=a2-c2
③y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④若a∈(π,
4
),则
1
1-tanα
>1+tanα>
2tanα

⑤函数f(x)=
e-x+3
e-x+2
(e是自然对数的底数)的最小值为2.
其中所有真命题的代号有
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

同步练习册答案