设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.
对任意的[0,l]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(1)证明:对任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),则(0,x2)为含峰区间;若f(x1)≤f(x2),则(x*,1)为含峰区间;
(2)对给定的r(0<r<0.5=,证明:存在x1,x2∈(0,1),满足x2-x1≥2r,使得由(Ⅰ)所确定的含峰区间的长度不大于0.5+r;
(3)选取x1,x2∈(0,1),x1<x2,由(Ⅰ)可确定含峰区间为(0,x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0,x2)的情况下,试确定x1,x2,x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)
(1)证明:设x*为f(x)的峰点,则由单峰函数定义可知,f(x)在[0,x*]上单调递增,在[x*,1]上单调递减. 当f(x1)≥f(x2)时,假设x*(0,x2),则x1<x2<x*,从而f(x*)≥f(x2)>f(x1),这与f(x1)≥f(x2)矛盾,所以x*∈(0,x2),即(0,x2)是含峰区间. 当f(x1)≤f(x2)时,假设x*(x2,1),则x*<≤x1<x2, 从而f(x*)≥f(x1)>f(x2), 这与f(x1)≤f(x2)矛盾,所以x*∈(x1,1),即(x1,1)是含峰区间. (2)证明:由(I)的结论可知: 当f(x1)≥f(x2)时,含峰区间的长度为l1=x2; 当f(x1)≤f(x2)时,含峰区间的长度为l2=1-x1; 对于上述两种情况,由题意得 ① 由①得1+x2-x1≤1+2r,即x1-x1≤2r. 又因为x2-x1≥2r,所以x2-x1=2r,② 将②代入①得x1≤0.5-r,x2≥0.5-r,③ 由①和③解得x1=0.5-r,x2=0.5+r. 所以这时含峰区间的长度l1=l1=0.5+r,即存在x1,x2使得所确定的含峰区间的长度不大于0.5+r. (3)解:对先选择的x1;x2,x1<x2,由(Ⅱ)可知x1+x2=1,④ 在第一次确定的含峰区间为(0,x2)的情况下,x3的取值应满足x3+x1=x2,⑤ 由④与⑤可得,当x1>x3时,含峰区间的长度为x1. 由条件x1-x3≥0.02,得x1-(1-2x1)≥0.02,从而x1≥0.34. 因此,为了将含峰区间的长度缩短到0.34,只要取x1=0.34,x2=0.66,x3=0.32. |
科目:高中数学 来源: 题型:
①y=3-f(x) ②y=1+ ③y=[f(x)]2 ④y=1-
A.1 B
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)当x∈(1,3]时,f(x)的表达式;
(2)f(-3)及f(3.5)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
A.a<-1或a> B.-l<a<
C.a< D.a<且a≠-1
查看答案和解析>>
科目:高中数学 来源:2011-2012学年大纲版高三上学期单元测试(6)数学试卷 题型:解答题
设f(x)是定义在[-1,1]上的奇函数,且对任意的实数a,b∈[-1,1],当a+b
≠0时,都有>0.
(1)若a>b,试比较f(a)与f(b)的大小;
(2)解不等式f(x-)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)这两个函数的定义域的交集是空集,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源:江苏省2010年高考预测试题数学 题型:解答题
设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.
(I)证明:对任意的∈(O,1),,若f()≥f(),则(0,)为含峰区间:若f()f(),则为含峰区间:
(II)对给定的r(0<r<0.5),证明:存在∈(0,1),满足,使得由(I)所确定的含峰区间的长度不大于0.5+r:
(III)选取∈(O,1),,由(I)可确定含峰区间为或,在所得的含峰区间内选取,由与或与类似地可确定一个新的含峰区间,在第一次确定的含峰区间为(0,)的情况下,试确定的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0. 34(区间长度等于区间的右端点与左端点之差)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com