A. | ($\frac{2}{3}$,1) | B. | (0,$\frac{2}{3}$)∪(1,+∞) | C. | (1,+∞) | D. | (0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞) |
分析 把1变成底数的对数,讨论底数与1的关系,确定函数的单调性,根据函数的单调性整理出关于a的不等式,得到结果,把两种情况求并集得到结果.
解答 解:∵loga$\frac{2}{3}$<1=logaa,
当a>1时,函数是一个增函数,不等式成立,
当0<a<1时,函数是一个减函数,根据函数的单调性有a<$\frac{2}{3}$,
综上可知a的取值是(0,$\frac{2}{3}$)∪(1,+∞),
故答案为:(0,$\frac{2}{3}$)∪(1,+∞)
点评 本题主要考查对数函数单调性的应用、不等式的解法等基础知识,本题解题的关键是对于底数与1的关系,这里应用分类讨论思想来解题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3-$\sqrt{2}$ | B. | $3+\sqrt{2}$ | C. | $3-\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{3-\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com