精英家教网 > 高中数学 > 题目详情

【题目】已知

(Ⅰ)当时,求的极值;

(Ⅱ)若有2个不同零点,求的取值范围;

(Ⅲ)对,求证:

【答案】(1) ,无极大值(2) (3)见解析

【解析】试题分析:求导,利用导函数的符号确定函数的单调性,进而确定函数的极值;(求导,讨论的取值,研究导函数的符号变换,得到函数单调性和极值,再通过零点的个数确定极值的符号;作差构造函数,求导,利用导数求其最值即可证明.

试题解析:Ⅰ)当

为减函数

为增函数

,无极大值

时, ,只有个零点

时,

为减函数

为增函数

∴当 ,使

时,∴

∴函数有个零点

时,

,即

变化时 变化情况是

∴函数至多有一个零点,不符合题意

时, 单调递增

至多有一个零点,不合题意

③当时,即以

变化时 的变化情况是

∴函数至多有个零点

综上: 的取值范围是

Ⅲ)令

行禁止

为增函数

∴存在唯一使,即

,即为减函数

,即为增函数

∴对

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为,求的分布列和数学期望.

参考数据:

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重,经统计,这批学生的体重数据(单位:千克)全部介于之间,将数据分成以下组,第一组,第二组,第三组,第四组,第五组,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第组中随机抽取名学生做初检.

)求每组抽取的学生人数.

)若从名学生中再次随机抽取名学生进行复检,求这名学生不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举行中学生诗词大赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.

Ⅰ)求获得复赛资格的人数;

Ⅱ)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取人参加学校座谈交流,那么从得分在区间各抽取多少人?

Ⅲ)从(Ⅱ)抽取的人中,选出人参加全市座谈交流,设表示得分在区间中参加全市座谈交流的人数,求的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数满足,且在[0,1)上单调递减,若方程[0,1)上有实数根,则方程在区间[-1,7]上所有实根之和是

A. 12 B. 14 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中, 分别是 的中点, 平面, 是等边三角形, , ,.

(1)证明: 平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程的不同实数根的个数为,则的所有可能值为( )

A. 3 B. 1或3 C. 3或5 D. 1或3或5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy 中,曲线C1的参数方程为:),M是上的动点,P点满足,P点的轨迹为曲线

(1)求的参数方程;

(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求

查看答案和解析>>

同步练习册答案