精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)求曲线在点处的切线方程;

(2)时,若关于的方程存在两个正实数根,证明:.

【答案】(1);(2)见解析

【解析】

1)求出函数的导函数,再计算出,即可求出切线方程;

(2)由存在两个正实数根,整理得方程存在两个正实数根.利用导数研究其单调性、最值,因为有两个零点,即,得.

因为实数的两个根,所以,从而.,则,变形整理得.要证,则只需证,即只要证

再构造函数即可证明.

(1):

∴曲线在点处的切线方程为.

(2)证明:存在两个正实数根

整理得方程存在两个正实数根.

,知

,则

时,上单调递增;

时,上单调递减.

所以.

因为有两个零点,即,得.

因为实数的两个根,

所以,从而.

,则,变形整理得.

要证,则只需证,即只要证

结合对数函数的图象可知,只需要证两点连线的斜率要比两点连线的斜率小即可.

因为,所以只要证,整理得.

,则

所以上单调递减,即

所以成立,故成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车尾气中含有一氧化碳(),碳氢化合物()等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废.某环保组织为了解公众对机动车强制报废标准的了解情况,随机调查了100人,所得数据制成如下列联表:

不了解

了解

总计

女性

50

男性

15

35

50

总计

100

(1)若从这100人中任选1人,选到了解机动车强制报废标准的人的概率为,问是否有的把握认为“对机动车强制报废标准是否了解与性别有关”?

(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过15年,可近似认为排放的尾气中浓度与使用年限线性相关,试确定关于的回归方程,并预测该型号的汽车使用12年排放尾气中的浓度是使用4年的多少倍.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:用最小二乘法求线性回归方程系数公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.

1)求这个样本数据的中位数和众数;

2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异。”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线,直线为曲线在点处的切线.如图所示,阴影部分为曲线、直线以及轴所围成的平面图形,记该平面图形绕轴旋转一周所得的几何体为.给出以下四个几何体:

图①是底面直径和高均为的圆锥;

图②是将底面直径和高均为的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;

图③是底面边长和高均为的正四棱锥;

图④是将上底面直径为,下底面直径为,高为的圆台挖掉一个底面直径为,高为的倒置圆锥得到的几何体.

根据祖暅原理,以上四个几何体中与的体积相等的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在古装电视剧《知否》中,甲乙两人进行一种投壶比赛,比赛投中得分情况分有初”“贯耳”“散射”“双耳”“依竿五种,其中有初两筹贯耳四筹散射五筹双耳六筹依竿十筹,三场比赛得筹数最多者获胜.假设甲投中有初的概率为,投中贯耳的概率为,投中散射的概率为,投中双耳的概率为,投中依竿的概率为,乙的投掷水平与甲相同,且甲乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个贯耳,乙投了个双耳,则三场比赛结束时,甲获胜的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面ABCD是边长为2的菱形,平面ABCDBE与平面ABCD所成的角为.

1)求证:平面平面BDE

2)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )

A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的各条棱长均相等, 的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )

A. 平面平面 B. 三棱锥的体积为定值

C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

1)当时,求函数的单调区间;

2)若函数在区间上有唯一零点,试求a的值.

查看答案和解析>>

同步练习册答案