精英家教网 > 高中数学 > 题目详情
如图,在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC,AB⊥AC,点D是BC上一点,且AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1
(2)求证:A1B平面ADC1
(3)求二面角C-AC1-D大小的余弦值.
(1)证明:依题意,C1C⊥平面ABC,∵AD?平面ABC∴C1C⊥AD,…(2分)
又AD⊥C1D,∴C1C∩C1D=C1∴AD⊥平面BC1,又AD?平面ABC…(3分)
∴平面ADC1⊥平面BCC1B1…(4分)
(2)证明:连接A1C交AC1于点E,则E是A1C的中点,连接DE.…(5分)
由(1)知AD⊥平面BC1,∴AD⊥BC,∴D是BC中点…(6分)
∴A1BDE…(7分)
又∵DE?平面ADC1,∵A1B?平面ADC1∴A1B平面ADC1.…(8分)
(3)如图,建立空间直角坐标系Axyz,设A1A=AB=AC=2,
则A(0,0,0),D(1,1,0),C1(0,2,2).…(9分)
AD
=(1,1,0)
AC1
=(0,2,2)

设平面ADC1的一个法向量为
m
=(x,y,z)

m
AD
=0,
m
AC1
=0

x+y=0
2y+2z=0
,令x=1,得y=-1,z=1,
m
=(1,-1,1)

取平面CAC1的一个法向量为
n
=(1,0,0)
,…(11分)
cos<
m
n
>=
m
n
|
m
|•|
n
|
=
1
3
•1
=
3
3

所以二面角C-AC1-D大小的余弦值为
3
3
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直棱柱(侧棱垂直于底面的棱柱)ABC-A1B1C1,在底面ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别为A1B1,A1A的中点.
(1)求cos<
BA1
CB1
的值;
(2)求证:BN⊥平面C1MN.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1所有棱长都是2,D是棱AC的中点,E是棱CC1的中点,AE交A1D于点H.
(1)求证:AE⊥平面A1BD;
(2)求二面角D-BA1-A的大小(用反三角函数表示)
(3)求点B1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(1)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.
(2)若二面角A-B1E-A1的大小为30°,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠ABC=
π
4
,PA⊥底面ABCD,PA=2,M为PA的中点,N为BC的中点.AF⊥CD于F,如图建立空间直角坐标系.
(Ⅰ)求出平面PCD的一个法向量并证明MN平面PCD;
(Ⅱ)求二面角P-CD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.
(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF平面PAD,求AF的长;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
( I)求二面角C-DE-C1的正切值;( II)求直线EC1与FD1所成的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(1)求证:DE平面PBC;
(2)求证:AB⊥PE;
(3)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在四边形中,的中点,且,则      .

查看答案和解析>>

同步练习册答案