精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{2})}^{x},}&{x≤0}\\{f(2x-2)}&{0<x≤\frac{3}{2}}\end{array}\right.$,若方程f(x)=x+a有且只有三个不相等的实根,则实数a的取值范围是(  )
A.[0,1)B.[1,2)C.[1,3)D.[0,3)

分析 先求出函数f(x)的解析式,作出函数f(x)的图象,利用数形结合进行求解即可.

解答 解:当0<x≤1,则-2<2x-2≤0,
此时f(x)=f(2x-2)=$(\frac{1}{2})^{2x-2}$=($\frac{1}{4}$)x-1,0<x≤1,
当1<x≤$\frac{3}{2}$,则0<2x-2≤1,
此时f(x)=f(2x-2)=($\frac{1}{4}$)2x-2-1=)=($\frac{1}{4}$)2x-3,1<x≤$\frac{3}{2}$,
作出函数f(x)的图象如图:
由图象知当直线经过点A(0,1)时,y=x+a与y=f(x)有三个交点,
此时a=1,
当直线经过点B(1,4)时,由4=1+a,解得a=3,
故若方程f(x)=x+a有且只有三个不相等的实根,
则满足1≤a<3,
故选:C.

点评 本题主要考查函数与方程的应用,求出函数的解析式,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知抛物线y2=2px(p>0)的准线与圆(x-2)2+y2=9相切,则p的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已函数f(x)是定义在[-1,1]上的奇函数,在[0,1]上f(x)=2x+ln(x+1)-1;
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从高三抽出50名学生参加数学竞赛,由成绩得到如图的频率分布直方图.
试利用频率分布直方图求:
(1)这50名学生成绩的众数与中位数.  
(2)这50名学生的平均成绩.(答案精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合M={x|x≥1},N={x|(x+1)(x-3)≥0},则∁U(M∩N)=(  )
A.{x|x<3}B.{x|x≤3}C.{x|-1<x≤3}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O上三个不同点A,B,C,若$\overrightarrow{CO}=\overrightarrow{CA}•{sin^2}θ+\overrightarrow{CB}•{cos^2}θ$,则∠ACB=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数函数y=|x-2|的单调增区间是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,△ABC的面积是78cm2,其中BD=DC,AF=FE=EC,那么阴影部分的面积为13cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若sinx=-1,x∈[0,2π],则x为$\frac{3π}{2}$.

查看答案和解析>>

同步练习册答案