精英家教网 > 高中数学 > 题目详情
已知F1、F2是椭圆方程=1的左、右焦点,在椭圆上存在一点P(P在第二象限),使得它到左、右准线的距离分别为6和12.

(1)求证:=0;

(2)求以椭圆的焦点为焦点,过点P的双曲线方程;

(3)(理)求线段PF2的中垂线方程,它与(2)的双曲线是否存在交点?

答案:(1)证明:a=,b=,c=5,e=,|PF1|=ed1=,|PF2|=ed2=,

∴|PF1|2+|PF2|2=|F1F2|2.

∴PF1⊥PF2,即=0.

(2)解:设双曲线方程为=1,由题意可得P(-3,4),∴2a=|PF2|-|PF1|=.∴a=5,

b=.

∴双曲线方程为=1.

(3)(理)解:线段PF2的中垂线过线段PF2的中点(1,2),斜率为2,故中垂线方程为y=2x.

由于它与双曲线的一条渐近线方程y=2x平行,故它与双曲线无交点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若在椭圆上存在一点P,使∠F1PF2=120°,则椭圆离心率的范围是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使得∠F1PF2=120°,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆的两个焦点.△F1AB为等边三角形,A,B是椭圆上两点且AB过F2,则椭圆离心率是
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,椭圆上存在一点P,使得SF1PF2=
3
b2
,则该椭圆的离心率的取值范围是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1
的两个焦点,点P是椭圆上一个动点,那么|
PF1
+
PF2
|
的最小值是(  )

查看答案和解析>>

同步练习册答案