精英家教网 > 高中数学 > 题目详情

已知函数的图象过点P(0,2),且在点M(-1,)处的切线方程
(1)求函数的解析式;   
(2)求函数的图像有三个交点,求的取值范围。

(1);(2)

解析试题分析:(1)将点代入函数解析式可得的值,将代入直线可得的值,再由切线方程可知切线的斜率为6,由导数的几何意义可知即,解由组成的方程组可得的值。(2)可将问题转化为有三个不等的实根问题,将整理变形可得,令,则的图像与图像有三个交点。然后对函数求导,令导数等于0求其根。讨论导数的符号,导数正得增区间,导数负得减区间,根据函数的单调性得函数的极值,数形结合分析可得出的取值范围。
(1)由的图象经过点,知
所以,则 
由在处的切线方程是,即。所以解得。 
故所求的解析式是。    
(2)因为函数的图像有三个交点
所以有三个根 
有三个根
,则的图像与图像有三个交点。 
接下来求的极大值与极小值(表略)。
的极大值为 的极小值为 
因此
考点:1导数的几何意义;2用导数研究函数的图像及性质。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数f(x)=ax3+3x2+3x(a≠0).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(1,2)是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,e=2.71828…是自然对数的底数),曲线在点处的切线与x轴平行.
(1)求k的值,并求的单调区间;
(2)设,其中的导函数.证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在点(2,f(2))处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3+ax2+bx+a2(a,b∈R).
(1)若函数f(x)在x=1处有极值10,求b的值;
(2)若对于任意的a∈[-4,+∞),f(x)在x∈[0,2]上单调递增,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R),为其导函数,且有极小值
(1)求的单调递减区间;
(2)若,当时,对于任意x,的值至少有一个是正数,求实数m的取值范围;
(3)若不等式为正整数)对任意正实数恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值-2.
(1)求函数的解析式;
(2)求曲线在点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求的单调区间;
(2)若当时,,求a的取值范围。

查看答案和解析>>

同步练习册答案