精英家教网 > 高中数学 > 题目详情

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

【答案】(1)当α,即DBC中点时,原式取最大值;(2).

【解析】

(1)由题意可得β=α+根据三角函数和差公式及辅助角公式化简即可求出其最大值

(2)根据三角函数差角公式求得sinα,再由正弦定理,求得AB的长度进而求得三角形面积

(1)ABC是等边三角形,得β=α+

0≤α≤,故2cos-cos=2cos-cossin

故当α=,即DBC中点时,原式取最大值

(2)cos β= ,得sin β=

sin α=sin=sin βcos-cos βsin

由正弦定理

AB= BD=×1= ,故SABDAB·BD·sin B=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即,其中abc分别为内角ABC的对边.,则面积S的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一名高二学生盼望2020年进入某名牌大学学习,假设该名牌大学有以下条件之一均可录取:①2020年2月通过考试进入国家数学奥赛集训队(集训队从2019年10月省数学竞赛一等奖中选拔):②2020年3月自主招生考试通过并且达到2020年6月高考重点分数线,③2020年6月高考达到该校录取分数线(该校录取分数线高于重点线),该学生具备参加省数学竞赛、自主招生和高考的资格且估计自己通过各种考试的概率如下表

省数学竞赛一等奖

自主招生通过

高考达重点线

高考达该校分数线

0.5

0.6

0.9

0.7

若该学生数学竞赛获省一等奖,则该学生估计进入国家集训队的概率是0.2.若进入国家集训队,则提前录取,若未被录取,则再按②、③顺序依次录取:前面已经被录取后,不得参加后面的考试或录取.(注:自主招生考试通过且高考达重点线才能录取)

(Ⅰ)求该学生参加自主招生考试的概率;

(Ⅱ)求该学生参加考试的次数的分布列及数学期望;

(Ⅲ)求该学生被该校录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx=ax2﹣2ax+1+ba0)在区间[03]上有最大值4和最小值1.设fx=

1)求ab的值;

2)若不等式f2x﹣k2x≥0x∈[﹣11]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数.在平面直角坐标系中,已知点,直线,曲线轴交于点、与交于点分别是曲线与线段上的动点.

(1)用表示点到点距离;

(2)设,线段的中点在直线,求的面积;

(3)设,是否存在以为邻边的矩形,使得点上?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了实现绿色发展,避免浪费能源,某市政府计划对居民用电实行阶梯收费的方法.为此,相关部门随机调查了20户居民六月分的月用电量(单位:kwh)和家庭月收入(单位:方元)月用电量数据如下1863728293981061018130134139147163180194212237260324家庭月收入数据如下0.210.240.350400.520.600.580.650650.630.680.800.830.930.970.961.11.21.51.8

1)根据国家发改委的指示精神,该市实行3阶阶梯电价,使7%的用户在第一档,电价为0.56/kwh20%的用户在第二档,电价为0.61/kwh5%的用户在第三档,电价为0.86/kwh,试求出居民用电费用Q与用电量x间的函数关系式;

2)以家庭月收入t为横坐标,电量x为纵坐标作出散点图(如图)求出x关于t的回归直线方程(系数四舍五入保留整数);

3)小明家庭月收入7000元,按上述关系,估计小明家月支出电费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地1~10岁男童年龄(单位:岁)与身高的中位数 (单位,如表所示:

/岁

1

2

3

4

5

6

7

8

9

10

76.5

88.5

96.8

104.1

111.3

117.7

124

130

135.4

140.2

对上表的数据作初步处理,得到下面的散点图及一些统计量的值.

112.45

82.50

3947.71

566.85

(1)求关于的线性回归方程(回归方程系数精确到0.01);

(2)某同学认为方程更适合作为关于的回归方程模型,他求得的回归方程是.经调查,该地11岁男童身高的中位数为,与(1)中的线性回归方程比较,哪个回归方程的拟合效果更好?

(3)从6岁~10岁男童中每个年龄阶段各挑选一位男童参加表演(假设该年龄段身高的中位数就是该男童的身高).再从这5位男童中任挑选两人表演“二重唱”,则“二重唱”男童身高满足的概率是多少?

参考公式:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知yf(x)的导函数f′(x)的图像如图所示,则下列结论正确的是(  )

A.f(x)在(-3,-1)上先增后减B.x=-2是f(x)极小值点

C.f(x)在(-1,1)上是增函数D.x=1是函数f(x)的极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际象棋比赛中.胜局一得1分,平一局得0.5分,负一局得0分。今有8名选手进行单循环比赛(每两人均赛一局),赛完后、发现各选手的得分均不相同,当按得分由大到小排列好名次后,第四名选手得4.5分,第二名的得分等于最后四名选手得分总和.问前三名选手各得多少分?说明理由.

查看答案和解析>>

同步练习册答案