精英家教网 > 高中数学 > 题目详情

【题目】已知动点到点的距离与它到直线的距离的比值为,设动点形成的轨迹为曲线..

1)求曲线的方程;

2)过点的直线与曲线交于两点,点作,垂足为,过点作,垂足为,的取值范围.

【答案】(1)(2)

【解析】

1)设出点,根据圆锥曲线的统一定义可得出曲线的方程;

2)要求的取值范围,通过统一定义可转化求的取值范围,根据图形又可以转化为求的取值范围,运用韦达定理进行减元,构造函数求出结果。

:1)设,

由题意,

整理化简得

故曲线的方程为

2当直线的斜率为时,

当直线的斜率不为时,

设直线的方程为

消去,

化简整理得,

显然

由韦达定理可得:

由①②消去,可得

(ⅰ)当时,

(ⅱ)当时,

解得

综合(ⅰ)(ⅱ)得:

综上得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面为等腰梯形,.平面平面,四边形为菱形,.

1)求证:

2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆,设是椭圆上任一点,从原点向圆作两条切线,切点分别为

(1)若直线互相垂直,且点在第一象限内,求点的坐标;

(2)若直线的斜率都存在,并记为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是椭圆的左右焦点,过点的直线交椭圆于两点,且的周长为12

(Ⅰ)求椭圆的方程

(Ⅱ)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数.

,使得不等式成立,试求实数的取值范围;

)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,是等边三角形,是直角三角形,中点.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】个正数依次围成一个圆圈,其中是公差为的等差数列,而是公比为的等比数列.

1)若,求数列的所有项的和

2)若,求的最大值;

3)当时是否存在正整数,满足?若存在,求出值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案