精英家教网 > 高中数学 > 题目详情

f(x)=㏑x+2x-5的零点一定位于以下的区间


  1. A.
    (1,2)
  2. B.
    (2,3)
  3. C.
    (3,4)
  4. D.
    (4,5)
B
分析:确定零点存在的区间,直接用零点存在的条件进行验证,本题中函数已知,区间已知,故直接验证区间两个端点的函数值的符号即可确定正确选项,本题宜采用逐一验证法求解.
解答:由零点存在性定理得来,f(a)f(b)<0,即可确定零点存在的区间.
对于选项A,由于f(1)=-3<0,f(2)=ln2-1<0,故不能确定在(1,2)内存在零点
对于选项B,由于f(3)=ln3+1>0,故在(2,3)存在零点
对于选项C,D由于区间端点都为正,故不能确定在(3,4)与(4,5)中存在零点
综上知,在区间(2,3)存在零点
故选B
点评:本题考点是函数零点判定定理,考查依据零点存在的条件来判断零点的存在性,本题属于定理的直接运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),x∈D,若同时满足以下条件:
①函数f(x)是D上的单调函数;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域也是[a,b],
则称函数f(x)是闭函数.
(1)判断函数f(x)=2x+
4
x
,x∈[1,10];g(x)=-x3,x∈R是不是闭函数,并说明理由;
(2)若函数f(x)=
x+2
+k
,x∈[-2,+∞)是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•惠州模拟)已知函数f(x)=x3-3ax+b在x=1处有极小值2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数g(x)=
m3
f′(x)-2x+3
在[0,2]只有一个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•顺义区二模)对于定义域分别为M,N的函数y=f(x),y=g(x),规定:
函数h(x)=
f(x)•g(x),当x∈M且x∈N
f(x),当x∈M且x∉N
g(x),当x∉M且x∈N

(1)若函数f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函数h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,设bn为曲线y=h(x)在点(an,h(an))处切线的斜率;而{an}是等差数列,公差为1(n∈N*),点P1为直线l:2x-y+2=0与x轴的交点,点Pn的坐标为(an,bn).求证:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常数,且α∈[0,2π],请问,是否存在一个定义域为R的函数y=f(x)及一个α的值,使得h(x)=cosx,若存在请写出一个f(x)的解析式及一个α的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数.现给出下列函数:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1

⑤f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的函数有
①④⑤
①④⑤

查看答案和解析>>

同步练习册答案