精英家教网 > 高中数学 > 题目详情

【题目】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a=________,估计该小学学生身高的中位数为______

【答案】0.030

【解析】

(1)根据频率和为1,求出a的值;(2)根据频率分布直方图,计算众中位数.

(1)因为直方图中的各个矩形的面积之和为1,

所以有10×(0.005+0.035+a+0.020+0.010)=1,

解得a=0.030;

(2)根据频率分布直方图知,又0.005×10+0.035×10=0.4<0.5,

0.4+0.030×10=0.7>0.5,

所以中位数在[120,130)内,可设为x,

则(x﹣120)×0.030+0.4=0.5,

解得x=

所以中位数为

故答案为:0.030 ,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁衰分得100,60,36,21.6个单位,递减的比例为40%,今共有粮m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分得80石,乙、丁衰分所得的和为164石,则“衰分比”与m的值分别为(
A.20% 369
B.80% 369
C.40% 360
D.60% 365

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线和椭圆有公共的焦点,且离心率为

)求双曲线的方程.

)经过点作直线交双曲线 两点,且的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,双曲线E的参数方程为 (θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程;
(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且f(﹣x﹣1)=f(x﹣1),当x∈[﹣1,0]时,f(x)=﹣x3 , 则关于x的方程f(x)=|cosπx|在[﹣ ]上的所有实数解之和为(
A.﹣7
B.﹣6
C.﹣3
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且 =λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.

(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为 ?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和Sn满足:Sn=nan﹣2nn﹣1),首项=1.

(1)求数列{an}的通项公式;

(2)设数列的前n项和为Mn,求证: Mn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.

查看答案和解析>>

同步练习册答案