精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的公差d>0,设{an}的前n项和为Sn , a1=1,S2S3=36.
(1)求d及Sn
(2)求m,k(m,k∈N*)的值,使得am+am+1+am+2+…+am+k=65.

【答案】
(1)解:由a1=1,S2S3=36得,

(a1+a2)(a1+a2+a3)=36,

即(2+d)(3+3d)=36,化为d2+3d﹣10=0,

解得d=2或﹣5,

又公差d>0,则d=2,

所以Sn=n =n2(n∈N*).


(2)解:由(1)得,an=1+2(n﹣1)=2n﹣1,

由am+am+1+am+2+…+am+k=65得,

即(k+1)(2m+k﹣1)=65,

又m,k∈N*,则(k+1)(2m+k﹣1)=5×13,或(k+1)(2m+k﹣1)=1×65,

下面分类求解:

当k+1=5时,2m+k﹣1=13,解得k=4,m=5;

当k+1=13时,2m+k﹣1=5,解得k=12,m=﹣3,故舍去;

当k+1=1时,2m+k﹣1=65,解得k=0,故舍去;

当k+1=65时,2m+k﹣1=1,解得k=64,m=﹣31,故舍去;

综上得,k=4,m=5.


【解析】(1)根据等差数列通项公式和前n项和公式,把条件转化为关于公差d的二次方程求解,注意d的范围对方程的根进行取舍;(2)由(1)求出等差数列{an}的通项公式,利用等差数列的前n项和公式,对am+am+1+am+2+…+am+k=65化简,列出关于m、k的方程,再由m,k∈N*进行分类讨论,求出符合条件的m、k的值.
【考点精析】关于本题考查的等差数列的前n项和公式和数列的前n项和,需要了解前n项和公式:;数列{an}的前n项和sn与通项an的关系才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线 轴的交点是椭圆 的一个焦点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,是否存在使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知.

(Ⅰ)解不等式

(Ⅱ)若关于的不等式对任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人,则不同的安排方式共有__________种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为,后2天均为,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四边形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ,试求x与y满足的关系式;
(2)满足(1)同时又有 ,求x,y的值及四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 fx=axlnx,其中a为常数,设e为自然对数的底数.

1)当a=1时,求的最大值;

2)若fx)在区间(0e]上的最大值为-3,求a的值;

3)当a=1时,试推断方程是否有实数解 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆过点 .

求:(1)周长最小的圆的方程;

2)圆心在直线上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a﹣b|.
(1)求ξ=1的概率;
(2)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.

查看答案和解析>>

同步练习册答案