精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2|x+a|+|x﹣ |(a≠0).
(1)当a=1时,解不等式f(x)<4;
(2)求函数g(x)=f(x)+f(﹣x)的最小值.

【答案】
(1)解:∵a=1,∴原不等式为2|x+1|+|x﹣1|<4,

,或 ,或

解得 或﹣1≤x<1或无解,

∴原不等式的解集为


(2)解:g(x)=f(x)+f(﹣x)=

当且仅当 ,即 ,且(x+a)(x﹣a)<0,(x+ )(x﹣ )<0时取等号,

∴g(x)的最小值为


【解析】(1)对x的范围进行讨论,去绝对值符号解出;(2)利用绝对值不等式的性质和基本不等式得出最小值.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (其中t为参数),现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)写出直线l和曲线C的普通方程;
(Ⅱ)已知点P为曲线C上的动点,求P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
(Ⅰ)证明:AC=AB1
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:

x

3

4

5

6

y

25

30

40

45

由上表可得线性回归方程 = x+ ,据此模型预报广告费用为8万元时的销售额是(
附: = = x.
A.59.5
B.52.5
C.56
D.63.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.
(1)根据已知条件完成下面的2×2列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?

网购迷

非网购迷

合计

年龄不超过40岁

年龄超过40岁

合计


(2)若从网购迷中任意选取2名,求其中年龄丑啊过40岁的市民人数ξ的分布列与期望. 附:

P(K2≥k0

0.15

0.10

0.05

0.01

k0

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣3)2+(y﹣4)2=16,过直线l:6x+8y﹣5a=0(a>0)上的任意一点作圆的切线,若切线长的最小值为 ,则直线l在y轴上的截距为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,直线l的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,平面的中点.

Ⅰ)求CEDB所成角的余弦值;

Ⅱ)设点在线段上,且直线与平面所成角的正弦值为,求线段的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)+
(I)讨论函数f(x)在(0,+∞)上的单调性;
(II)设函数f(x)存在两个极值点,并记作x1 , x2 , 若f(x1)+f(x2)>4,求正数a的取值范围;
(III)求证:当a=1时,f(x)> (其中e为自然对数的底数)

查看答案和解析>>

同步练习册答案