试题分析:本题主要考查导数的运算,利用导数研究函数的单调区间、最值等数学知识和方法,突出考查分类讨论思想和综合分析问题和解决问题的能力.第一问是利用导数研究函数的单调性,但是题中有参数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921609283.png)
,需对参数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921609283.png)
进行讨论,可以转化为含参一元一次不等式的解法;第二问先是恒成立问题,通过第一问的单调性对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921609283.png)
进行讨论,通过求函数的最大值求出符合题意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921609283.png)
,表达式确定后,再利用函数的单调性的定义,作差,放缩法证明不等式.
试题解析:(Ⅰ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921672889.png)
.
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921500396.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921718555.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921531535.png)
上递增;
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921750398.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921547689.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921718555.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
单调递增;
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921578750.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921843547.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
单调递减. 5分
(Ⅱ)由(Ⅰ)知,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921500396.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921531535.png)
上递增,
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922077479.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921469540.png)
不恒成立.
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922093415.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922124663.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
递减,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922155670.png)
,不合题意.
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922171493.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922186664.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
递增,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922155670.png)
,不合题意.
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922233386.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921453447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922280428.png)
上递增,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922296510.png)
上递减,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922311684.png)
符合题意,
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922233386.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922342459.png)
(当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922358323.png)
时取“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922374164.png)
”). 8分
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021921469524.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240219224201240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922436949.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021922452815.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240219214841095.png)
. 12分